淘先锋技术网

首页 1 2 3 4 5 6 7

如何训练神经网络

1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。

获得准确度等衡量模型的标准,用模型进行预测。这个阶段的技巧有:·固定随机种子使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。·简单化在此阶段不要有任何幻想,不要扩增数据。

扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。

·在评估中添加有效数字在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。·在初始阶段验证损失函数验证函数是否从正确的损失值开始。

例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。·初始化正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。

如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。·人类基线监控除人为可解释和可检查的损失之外的指标。

尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。

·设置一个独立于输入的基线最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。·过拟合一个batch增加了模型的容量并验证我们可以达到的最低损失。

·验证减少训练损失尝试稍微增加数据容量。

谷歌人工智能写作项目:小发猫

深度神经网络是如何训练的?

Coursera的Ng机器学习,UFLDL都看过rbsci。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。

反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。

后来看了LiFeiFei的StanfordUniversityCS231n:ConvolutionalNeuralNetworksforVisualRecognition,我的感觉是对CNN的理解有了很大的提升。

沉下心来推推公式,多思考,明白了反向传播本质上是链式法则(虽然之前也知道,但是当时还是理解的迷迷糊糊的)。所有的梯度其实都是对最终的loss进行求导得到的,也就是标量对矩阵or向量的求导。

当然同时也学到了许多其他的关于cnn的。并且建议你不仅要完成练习,最好能自己也写一个cnn,这个过程可能会让你学习到许多更加细节和可能忽略的东西。

这样的网络可以使用中间层构建出多层的抽象,正如我们在布尔线路中做的那样。

例如,如果我们在进行视觉模式识别,那么在第一层的神经元可能学会识别边,在第二层的神经元可以在边的基础上学会识别出更加复杂的形状,例如三角形或者矩形。第三层将能够识别更加复杂的形状。依此类推。

这些多层的抽象看起来能够赋予深度网络一种学习解决复杂模式识别问题的能力。然后,正如线路的示例中看到的那样,存在着理论上的研究结果告诉我们深度网络在本质上比浅层网络更加强大。

精细动作有哪些呢?

精细动作有:抓、握、伸、屈、托、扭、拧、撕、推、抓、刮、拔、叩、压、挖、弹、鼓掌、夹、穿、抹、拍、摇、绕、旋转等。对于婴幼儿来说,手指的活动,是大脑的体操。活动的是手,得到锻炼的是大脑。

手的动作与人脑的发育有着极为密切和重要的关系,在精细动作中,一方面需要宝宝视、听、触觉等多方面感觉的参与,另一方面,手和手指活动能够使大脑的更多区域得到锻炼。

意义:俗话说“心灵手巧”说明手与脑的关系是非常密切的。大脑的发育使手的动作得到发展。反之,灵巧的手也能加速大脑神经网络的建立,刺激大脑快速发展。

精细动作的发育水平,表现了宝宝手的操作能力的高低,而手的操作能力高低又决定了宝宝未来学习某种技能的快慢。良好的操作能力是一种基本的素质,是学习任何一种特殊技能的前提条件。

如果宝宝的精细动作不良,说明手的工作能力不好,这直接反映宝宝的大脑的发育水平是否存在一定的问题,需要关注。宝宝精细动作不良,也会影响到宝宝的自信,进而,影响他的心理成长。

Hopfield 神经网络有哪几种训练方法

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

根据连接的拓扑结构,神经网络模型可以分为:(1)前向网络网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。

这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。

Hopfield网络、波耳兹曼机均属于这种类型。学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。

由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。

在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。

有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。

当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。

此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。

自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。

为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。

一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。

“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。

混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。

混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。

混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

什么神经网络训练学习?学习有哪几种方式?

tensorflow 训练一个神经网络 需要多长时间

基本使用使用TensorFlow,你必须明白TensorFlow:使用图(graph)来表示计算任务.在被称之为会话(Session)的上下文(context)中执行图.使用tensor表示数据.通过变量(Variable)维护状态.使用feed和fetch可以为任意的操作(arbitraryoperation)赋值或者从其中获取数据.综述TensorFlow是一个编程系统,使用图来表示计算任务.图中的节点被称之为op(operation的缩写).一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor.每个Tensor是一个类型化的多维数组.例如,你可以将一小组图像集表示为一个四维浮点数数组,这四个维度分别是[batch,height,width,channels].一个TensorFlow图描述了计算的过程.为了进行计算,图必须在会话里被启动.会话将图的op分发到诸如CPU或GPU之类的设备上,同时提供执行op的方法.这些方法执行后,将产生的tensor返回.在Python语言中,返回的tensor是numpyndarray对象;在C和C++语言中,返回的tensor是tensorflow::Tensor实例.计算图TensorFlow程序通常被组织成一个构建阶段和一个执行阶段.在构建阶段,op的执行步骤被描述成一个图.在执行阶段,使用会话执行执行图中的op.例如,通常在构建阶段创建一个图来表示和训练神经网络,然后在执行阶段反复执行图中的训练op.TensorFlow支持C,C++,Python编程语言.目前,TensorFlow的Python库更加易用,它提供了大量的辅助函数来简化构建图的工作,这些函数尚未被C和C++库支持.三种语言的会话库(sessionlibraries)是一致的.构建图构建图的第一步,是创建源op(sourceop).源op不需要任何输入,例如常量(Constant).源op的输出被传递给其它op做运算.Python库中,op构造器的返回值代表被构造出的op的输出,这些返回值可以传递给其它op构造器作为输入.TensorFlowPython库有一个默认图(defaultgraph),op构造器可以为其增加节点.这个默认图对许多程序来说已经足够用了.阅读Graph类文档来了解如何管理多个图.importtensorflowastf#创建一个常量op,产生一个1x2矩阵.这个op被作为一个节点#加到默认图中.##构造器的返回值代表该常量op的返回值.matrix1=tf.constant([[3.,3.]])#创建另外一个常量op,产生一个2x1矩阵.matrix2=tf.constant([[2.],[2.]])#创建一个矩阵乘法matmulop,把'matrix1'和'matrix2'作为输入.#返回值'product'代表矩阵乘法的结果.product=tf.matmul(matrix1,matrix2)默认图现在有三个节点,两个constant()op,和一个matmul()op.为了真正进行矩阵相乘运算,并得到矩阵乘法的结果,你必须在会话里启动这个图.在一个会话中启动图构造阶段完成后,才能启动图.启动图的第一步是创建一个Session对象,如果无任何创建参数,会话构造器将启动默认图.欲了解完整的会话API,请阅读Session类.#启动默认图.sess=tf.Session()#调用sess的'run()'方法来执行矩阵乘法op,传入'product'作为该方法的参数.#上面提到,'product'代表了矩阵乘法op的输出,传入它是向方法表明,我们希望取回#矩阵乘法op的输出.##整个执行过程是自动化的,会话负责传递op所需的全部输入.op通常是并发执行的.##函数调用'run(product)'触发了图中三个op(两个常量op和一个矩阵乘法op)的执行.##返回值'result'是一个numpy`ndarray`对象.result=(product)printresult#==>[[12.]]#任务完成,关闭会话.sess.close()Session对象在使用完后需要关闭以释放资源.除了显式调用close外,也可以使用"with"代码块来自动完成关闭动作.withtf.Session()assess:result=([product])printresult在实现上,TensorFlow将图形定义转换成分布式执行的操作,以充分利用可用的计算资源(如CPU或GPU).一般你不需要显式指定使用CPU还是GPU,TensorFlow能自动检测.如果检测到GPU,TensorFlow会尽可能地利用找到的第一个GPU来执行操作.如果机器上有超过一个可用的GPU,除第一个外的其它GPU默认是不参与计算的.为了让TensorFlow使用这些GPU,你必须将op明确指派给它们执行.with...Device语句用来指派特定的CPU或GPU执行操作:withtf.Session()assess:withtf.device("/gpu:1"):matrix1=tf.constant([[3.,3.]])matrix2=tf.constant([[2.],[2.]])product=tf.matmul(matrix1,matrix2)...设备用字符串进行标识.目前支持的设备包括:"/cpu:0":机器的CPU."/gpu:0":机器的第一个GPU,如果有的话."/gpu:1":机器的第二个GPU,以此类推.阅读使用GPU章节,了解TensorFlowGPU使用的更多信息.交互式使用文档中的Python示例使用一个会话Session来启动图,并调用()方法执行操作.为了便于使用诸如IPython之类的Python交互环境,可以使用InteractiveSession代替Session类,使用()和()方法代替().这样可以避免使用一个变量来持有会话.#进入一个交互式TensorFlow会话.importtensorflowastfsess=tf.InteractiveSession()x=tf.Variable([1.0,2.0])a=tf.constant([3.0,3.0])#使用初始化器initializerop的run()方法初始化'x'()#增加一个减法subop,从'x'减去'a'.运行减法op,输出结果sub=(x,a)print()#==>[-2.-1.]TensorTensorFlow程序使用tensor数据结构来代表所有的数据,计算图中,操作间传递的数据都是tensor.你可以把TensorFlowtensor看作是一个n维的数组或列表.一个tensor包含一个静态类型rank,和一个shape.想了解TensorFlow是如何处理这些概念的,参见Rank,Shape,和Type.变量Variablesformoredetails.变量维护图执行过程中的状态信息.下面的例子演示了如何使用变量实现一个简单的计数器.参见变量章节了解更多细节.#创建一个变量,初始化为标量0.state=tf.Variable(0,name="counter")#创建一个op,其作用是使state增加1one=tf.constant(1)new_value=(state,one)update=tf.assign(state,new_value)#启动图后,变量必须先经过`初始化`(init)op初始化,#首先必须增加一个`初始化`op到图中.init_op=tf.initialize_all_variables()#启动图,运行opwithtf.Session()assess:#运行'init'op(init_op)#打印'state'的初始值print(state)#运行op,更新'state',并打印'state'for_inrange(3):(update)print(state)#输出:#0#1#2#3代码中assign()操作是图所描绘的表达式的一部分,正如add()操作一样.所以在调用run()执行表达式之前,它并不会真正执行赋值操作.通常会将一个统计模型中的参数表示为一组变量.例如,你可以将一个神经网络的权重作为某个变量存储在一个tensor中.在训练过程中,通过重复运行训练图,更新这个tensor.Fetch为了取回操作的输出内容,可以在使用Session对象的run()调用执行图时,传入一些tensor,这些tensor会帮助你取回结果.在之前的例子里,我们只取回了单个节点state,但是你也可以取回多个tensor:input1=tf.constant(3.0)input2=tf.constant(2.0)input3=tf.constant(5.0)intermed=(input2,input3)mul=(input1,intermed)withtf.Session()assess:result=([mul,intermed])printresult#输出:#[array([21.],dtype=float32),array([7.],dtype=float32)]需要获取的多个tensor值,在op的一次运行中一起获得(而不是逐个去获取tensor)。

Feed上述示例在计算图中引入了tensor,以常量或变量的形式存储.TensorFlow还提供了feed机制,该机制可以临时替代图中的任意操作中的tensor可以对图中任何操作提交补丁,直接插入一个tensor.feed使用一个tensor值临时替换一个操作的输出结果.你可以提供feed数据作为run()调用的参数.feed只在调用它的方法内有效,方法结束,feed就会消失.最常见的用例是将某些特殊的操作指定为"feed"操作,标记的方法是使用tf.placeholder()为这些操作创建占位符.input1=tf.placeholder(tf.float32)input2=tf.placeholder(tf.float32)output=(input1,input2)withtf.Session()assess:print([output],feed_dict={input1:[7.],input2:[2.]})#输出:#[array([14.],dtype=float32)]foralarger-scaleexampleoffeeds.如果没有正确提供feed,placeholder()操作将会产生错误.MNIST全连通feed教程(sourcecode)给出了一个更大规模的使用feed的例子.。

如何用Tensorflow 快速搭建神经网络

在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络。

在训练神经网络的时候,使用带指数衰减的学习率设置、使用正则化来避免过拟合、使用滑动平均模型来使得最终的模型更加健壮。

程序将计算神经网络前向传播的部分单独定义一个函数inference,训练部分定义一个train函数,再定义一个主函数main。

二、分析与改进设计1.程序分析改进第一,计算前向传播的函数inference中需要将所有的变量以参数的形式传入函数,当神经网络结构变得更加复杂、参数更多的时候,程序的可读性将变得非常差。

第二,在程序退出时,训练好的模型就无法再利用,且大型神经网络的训练时间都比较长,在训练过程中需要每隔一段时间保存一次模型训练的中间结果,这样如果在训练过程中程序死机,死机前的最新的模型参数仍能保留,杜绝了时间和资源的浪费。

第三,将训练和测试分成两个独立的程序,将训练和测试都会用到的前向传播的过程抽象成单独的库函数。这样就保证了在训练和预测两个过程中所调用的前向传播计算程序是一致的。

2.改进后程序设计该文件中定义了神经网络的前向传播过程,其中的多次用到的weights定义过程又单独定义成函数。

通过tf.get_variable函数来获取变量,在神经网络训练时创建这些变量,在测试时会通过保存的模型加载这些变量的取值,而且可以在变量加载时将滑动平均值重命名。

所以可以直接通过同样的名字在训练时使用变量自身,在测试时使用变量的滑动平均值。该程序给出了神经网络的完整训练过程。在滑动平均模型上做测试。

通过tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)获取最新模型的文件名,实际是获取checkpoint文件的所有内容。

人工智能中神经网络训练过程

如何训练深度神经网络

deeplearinig就是神经网络的一类,就是解决的训练问题的深层神经网络,所以你这问题“深度学习会代替神经网络‘就不对,BP么,BP有自己的优势,也是很成熟的算法,做手写识别等等效果已经商用化了,不会被轻易替代。

deeplearning远比BP要复杂,用来解决的问题也不是一个层面,所以也没有替代的必要。Deeplearning所涉及的问题大多数BP都没法解决的。度学习的概念源于人工神经网络的研究。

含多隐层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出,基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

系统地论述了神经网络的基本原理、方法、技术和应用,主要内容包括:神经信息处理的基本原理、感知器、反向传播网络、自组织网络、递归网络、径向基函数网络、核函数方法、神经网络集成、模糊神经网络、概率神经网络、脉冲耦合神经网络、神经场理论、神经元集群以及神经计算机。

每章末附有习题,书末附有详细的参考文献。神经网络是通过对人脑或生物神经网络的抽象和建模,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。

它以脑科学和认知神经科学的研究成果为基础,拓展智能信息处理的方法,为解决复杂问题和智能控制提供有效的途径,是智能科学和计算智能的重要部分。