本文主要分析下caffe
的源码,io
操作,以及数据库文件(如lmdb
)读取。
例如,从prototxt读取网络初始化参数:
NetParameter param;
ReadNetParamsFromTextFileOrDie(path, ¶m);
bool ReadProtoFromTextFile(const char *filename, Message *proto) {
int fd = open(filename, O_RDONLY);
CHECK_NE(fd, -1) << "File not found: " << filename;
FileInputStream *input = new FileInputStream(fd);
bool success = google::protobuf::TextFormat::Parse(input, proto);
delete input;
close(fd);
return success;
}
例如读取下面这个net
name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "/home/xy/caffe-master/examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
将参数写为prototxt文件:
void WriteProtoToTextFile(const Message &proto, const char *filename) {
int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);
FileOutputStream *output = new FileOutputStream(fd);
CHECK(google::protobuf::TextFormat::Print(proto, output));
delete output;
close(fd);
}
输出网络(打印), 示例:
// read proto txt to proto class
NetParameter param;
ReadNetParamsFromTextFileOrDie(path, ¶m);
// print proto class
PrintProto(param);
函数定义如下:
void PrintProto(const Message &proto) {
OstreamOutputStream os(&std::cout);
google::protobuf::TextFormat::Print(proto, &os);
}
读取proto文件转化为Datum:
// read Datum from file
string datum_path = base_dir + "0.proto";
Datum datum;
ReadProtoFromBinaryFileOrDie(datum_path, &datum);
bool ReadProtoFromBinaryFile(const char *filename, Message *proto) {
int fd = open(filename, O_RDONLY);
CHECK_NE(fd, -1) << "File not found: " << filename;
ZeroCopyInputStream *raw_input = new FileInputStream(fd);
CodedInputStream *coded_input = new CodedInputStream(raw_input);
coded_input->SetTotalBytesLimit(kProtoReadBytesLimit, 536870912);
bool success = proto->ParseFromCodedStream(coded_input);
delete coded_input;
delete raw_input;
close(fd);
return success;
}
Datum与cv::Mat的转化:
cv::Mat DecodeDatumToCVMatNative(const Datum &datum) {
cv::Mat cv_img;
CHECK(datum.encoded()) << "Datum not encoded";
const string &data = datum.data();
std::vector<char> vec_data(data.c_str(), data.c_str() + data.size());
cv_img = cv::imdecode(vec_data, -1);
if (!cv_img.data) {
LOG(ERROR) << "Could not decode datum ";
}
return cv_img;
}
void CVMatToDatum(const cv::Mat &cv_img, Datum *datum) {
datum->set_channels(cv_img.channels());
datum->set_height(cv_img.rows);
datum->set_width(cv_img.cols);
datum->clear_data();
datum->clear_float_data();
datum->set_encoded(false);
int datum_channels = datum->channels();
int datum_height = datum->height();
int datum_width = datum->width();
int datum_size = datum_channels * datum_height * datum_width;
std::string buffer(datum_size, ' ');
for (int h = 0; h < datum_height; ++h) {
const uchar *ptr = cv_img.ptr<uchar>(h);
int img_index = 0;
for (int w = 0; w < datum_width; ++w) {
for (int c = 0; c < datum_channels; ++c) {
int datum_index = (c * datum_height + h) * datum_width + w;
buffer[datum_index] = static_cast<char>(ptr[img_index++]);
}
}
}
datum->set_data(buffer);
}
下面简要看db
:
class Cursor {
public:
Cursor() { }
virtual ~Cursor() { }
virtual void SeekToFirst() = 0;
virtual void Next() = 0;
virtual string key() = 0;
virtual string value() = 0;
virtual bool valid() = 0;
DISABLE_COPY_AND_ASSIGN(Cursor);
};
class Transaction {
public:
Transaction() { }
virtual ~Transaction() { }
virtual void Put(const string& key, const string& value) = 0;
virtual void Commit() = 0;
DISABLE_COPY_AND_ASSIGN(Transaction);
};
class DB {
public:
DB() { }
virtual ~DB() { }
virtual void Open(const string& source, Mode mode) = 0;
virtual void Close() = 0;
virtual Cursor* NewCursor() = 0;
virtual Transaction* NewTransaction() = 0;
DISABLE_COPY_AND_ASSIGN(DB);
};
DB* GetDB(DataParameter::DB backend);
DB* GetDB(const string& backend);
}
DB *GetDB(const string &backend) {
if (backend == "lmdb") {
return new LMDB();
}
LOG(FATAL) << "Unknown database backend";
return NULL;
}
caffe
系列源码分析介绍
本系列深度学习框架caffe
源码分析主要内容如下:
1. caffe源码分析-cmake 工程构建:
caffe源码分析-cmake 工程构建主要内容:
自己从头构建一遍工程,这样能让我更好的了解大型的项目的构建。当然原始的caffe的构建感觉还是比较复杂(主要是cmake),我这里仅仅使用cmake构建,而且简化点,当然最重要的是支持CLion直接运行调试(如果需要这个工程可以评论留下你的邮箱,我给你发送过去)。
2. caffe的数据内存分配类SyncedMemory
, 以及类Blob
数据传输的媒介.
主要内容:
caffe源码分析-SyncedMemory
caffe源码分析-Blob
其中Blob
分析给出了其直接与opencv的图片相互转化以及操作,可以使得我们更好的理解Blob
.
3. caffe layer
的源码分析,包括从整体上说明了layer
类别以及其proto定义与核心函数.
内容如下:
caffe源码分析-layer
caffe源码分析-ReLULayer
caffe源码分析-inner_product_layer
caffe源码分析-layer_factory
首先分析了最简单的layer
Relu
,然后在是inner_product_layer全连接层
, 最后是layer_factory
caffe中 以此工厂模式create各种Layer.
4. 数据输入层,主要是多线程+BlockingQueue的方式读取数据训练:
内容如下:
caffe源码分析-BlockingQueue
caffe源码分析-InternalThread
caffe源码分析-DataReader
5. IO处理例如读取proto文件转化为网络,以及网络参数的序列化
内容如下:
caffe源码分析-DataTransformer
caffe源码分析-db, io
6. 最后给出了使用纯C++结合多层感知机网络训练mnist的示例
内容如下:
caffe c++示例(mnist 多层感知机c++训练,测试)
类似与caffe
一样按照layer、solver、loss、net
等模块构建的神经网络实现可以见下面这篇blog,相信看懂了这个python的代码理解caffe框架会更简单点.
最后如果需要cmake
+ CLion
直接运行调试caffe
的代码工程,可以评论留下你的邮箱,我给你发送过去.