淘先锋技术网

首页 1 2 3 4 5 6 7

这是一篇纯记录,学习贾志刚老师的基于OpenCV的刀片缺陷检测应用demo。

对于得到的刀片外接矩形,首先需要通过排序,确定他们的编号,然后根据模板进行相减得到与模板不同的区域,对这些区域进行形态学操作,去掉边缘细微差异,最终就得到了可以检出的缺陷或者划痕刀片。流程图如下。

0ac457b91c9b09d94dde218947aa2384.png
流程图

效果图如下。

30925def1a5be86a3289979814818e28.png
效果图
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/imgcodecs.hpp>
using namespace cv;
using namespace std;

void sort_box(vector<Rect>& boxes)
{
    int size = boxes.size();
    for (int i = 0; i < size - 1; ++i) 
    {
        for (int j = i; j < size; ++j) 
        {
            if (boxes[j].y < boxes[i].y) 
            {
                Rect tmp = boxes[i];
                boxes[i] = boxes[j];
                boxes[j] = tmp;
            }
        }
    }
}
Mat get_template(Mat& binary, vector<Rect>& rects)
{
    return binary(rects[0]);
}
void detect_defects(Mat& binary, vector<Rect>& rects, Mat& tpl, vector<Rect>& defects)
{
    int height = tpl.rows;
    int width = tpl.cols;
    int index = 1;
    int size = rects.size();
    // 发现缺失
    for (int i = 0; i < size; ++i) 
    {
        Mat roi = binary(rects[i]);
        resize(roi, roi, tpl.size());
        Mat mask;
        subtract(tpl, roi, mask);
        Mat se = getStructuringElement(MORPH_RECT, Size(5, 5));
        morphologyEx(mask, mask, MORPH_OPEN, se);
        threshold(mask, mask, 0, 255, THRESH_BINARY);
        int count = 0;
        for (int row = 0; row < height; ++row) 
        {
            for (int col = 0; col < width; ++col) 
            {
                int pv = mask.at<uchar>(row, col);
                if (pv == 255) 
                {
                    ++count;
                }
            }
        }
        if (count > 0) {
            defects.push_back(rects[i]);
        }
    }
}

int main()
{
	Mat image;
	image = imread("E:opencv_tutorial-masteropencv_tutorial-masterdataimagesce_01.jpg"); // Read the file

	if (image.empty()) // Check for invalid input
	{
		cout << "Could not open or find the image" << std::endl;
		return -1;
	}

	namedWindow("input", WINDOW_AUTOSIZE); // Create a window for display.
	imshow("input", image); // Show our image inside it.

	//图像二值化
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
	imshow("binary", binary);

	//定义结构元素
	Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));//MO_RECT矩形,size大小,point锚点
	morphologyEx(binary, binary, MORPH_OPEN, se);
	imshow("open-binary", binary);

	//轮廓发现
	vector<vector<Point>>contours;
	vector<Vec4i>hierarchy;//定义层级 放了4维int向量
	vector<Rect>rects;
	findContours(binary, contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);//能算出边界的坐标,记录在contours里
    int height = image.rows;
    for (size_t t = 0; t < contours.size(); t++) {
        Rect rect = boundingRect(contours[t]);
        double area = contourArea(contours[t]);
        if (rect.height > (height / 2)) {
            continue;
        }
        if (area < 150) {
            continue;
        }
        rects.push_back(rect);
        // 填充边缘,放大缺陷
        drawContours(binary, contours, t, Scalar(0), 2, 8);
    }

    // 对外接矩形框排序
    sort_box(rects);

    // 获取模板
    Mat tpl = get_template(binary, rects);

    for (int i = 0; i < rects.size(); ++i) {
        putText(image, format("num:%d", (i + 1)), Point(rects[i].x - 70, rects[i].y + 20),
            FONT_HERSHEY_PLAIN, 1.0, Scalar(255, 0, 0), 1);
    }

    // 检测并标明结果
    vector<Rect> defects;
    detect_defects(binary, rects, tpl, defects);
    for (int i = 0; i < defects.size(); ++i) 
    {
        rectangle(image, defects[i], Scalar(0, 0, 255));
        putText(image, "bad", Point(defects[i].x, defects[i].y),
            FONT_HERSHEY_PLAIN, 1.0, Scalar(0, 255, 0), 1);
    }

    imshow("result", image);
	
	waitKey(0);
    std::cout << "succeed.n";
	return 0;// Wait for a keystroke in the window
}

以下是python语言

import cv2 as cv
import numpy as np


def sort_boxes(rois):
    for i in range(0, len(rois)-1, 1):
        for j in range(i, len(rois), 1):
            x, y, w, h = rois[j]
            if y < rois[i][1]:
                bx, by, bw, bh = rois[i]
                rois[i] = [x, y, w, h]
                rois[j] = [bx, by, bw, bh]
    return rois;


def get_template(binary, boxes):
    x, y, w, h = boxes[0]
    roi = binary[y:y+h, x:x+w]
    return roi


def detect_defect(binary, boxes, tpl):
    height, width = tpl.shape
    index = 1
    defect_rois = []
    # 发现缺失
    for x, y, w, h in boxes:
        roi = binary[y:y + h, x:x + w]
        roi = cv.resize(roi, (width, height))
        mask = cv.subtract(tpl, roi)
        se = cv.getStructuringElement(cv.MORPH_RECT, (5, 5), (-1, -1))
        mask = cv.morphologyEx(mask, cv.MORPH_OPEN, se)
        ret, mask = cv.threshold(mask, 0, 255, cv.THRESH_BINARY)
        count = 0
        for row in range(height):
            for col in range(width):
                pv = mask[row, col]
                if pv == 255:
                    count += 1
        if count > 0:
            defect_rois.append([x, y, w, h])
        index += 1
    return defect_rois


src = cv.imread("D:code-workspaceClion-workspacelearnOpencvimagesce_02.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)

# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)

se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)

# 轮廓提取
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
height, width = src.shape[:2]
rects = []
for c in range(len(contours)):
    x, y, w, h = cv.boundingRect(contours[c])
    area = cv.contourArea(contours[c])
    if h > (height//2):
        continue
    if area < 150:
        continue
    rects.append([x, y, w, h])

# 排序轮廓
rects = sort_boxes(rects)
print(rects)
template = get_template(binary, rects);

# 填充边缘
for c in range(len(contours)):
    x, y, w, h = cv.boundingRect(contours[c])
    area = cv.contourArea(contours[c])
    if h > (height//2):
        continue
    if area < 150:
        continue
    cv.drawContours(binary, contours, c, (0), 2, 8)
cv.imshow("template", template)

# 检测缺陷
defect_boxes = detect_defect(binary, rects, template)
for dx, dy, dw, dh in defect_boxes:
    cv.rectangle(src, (dx, dy), (dx + dw, dy + dh), (0, 0, 255), 1, 8, 0)
    cv.putText(src, "bad", (dx, dy), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 255, 0), 2)

index = 1
for dx, dy, dw, dh in rects:
    cv.putText(src, "num:%d"%index, (dx-40, dy+15), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0), 1)
    index += 1

cv.imshow("result", src)
cv.imwrite("D:/binary2.png", src)

cv.waitKey(0)
cv.destroyAllWindows()

代码地址:

salvatoreitachi/OpenCV-​github.com