目录
2.SimpleAsyncHbaseEventSerializer
一.Flume汇入数据到Hive中
方法一:汇入到Hive指定的HDFS路径中:
1)在hive中创建数据库和外部表
create table flume;
create external table flume_into_hive(name string,age int) partitioned by (dt string) row format delimited fields terminated by ',' location '/user/hive/warehouse/flume.db/flume_into_hive';
2)在/root中创建hive.log文件
mkdir flume-hive
cd flume-hive/
vi hive.log
3)在flume的conf路径中编写配置文件flume-into-hive-1.conf
agent.sources=r1
agent.channels=c1
agent.sinks=s1agent.sources.r1.type=exec
agent.sources.r1.command=tail -F /root/flume-hive/hive.logagent.channels.c1.type=memory
agent.channels.capacity=1000
agent.channels.c1.transactionCapacity=100agent.sinks.s1.type=hdfs
agent.sinks.s1.hdfs.path = hdfs://node01:9000/user/hive/warehouse/flume.db/flume_into_hive/dt=%Y%m%d
agent.sinks.s1.hdfs.filePrefix = upload-
agent.sinks.s1.hdfs.fileSuffix=.txt
#是否按照时间滚动文件夹
agent.sinks.s1.hdfs.round = true
#多少时间单位创建一个新的文件夹
agent.sinks.s1.hdfs.roundValue = 1
#重新定义时间单位
agent.sinks.s1.hdfs.roundUnit = hour
#是否使用本地时间戳
agent.sinks.s1.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
agent.sinks.s1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
agent.sinks.s1.hdfs.fileType = DataStream
agent.sinks.s1.hdfs.writeFormat=Text
#多久生成一个新的文件
agent.sinks.s1.hdfs.rollInterval = 60
#设置每个文件的滚动大小大概是 128M
agent.sinks.s1.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关agent.sinks.s1.hdfs.rollCount = 0
agent.sources.r1.channels=c1
agent.sinks.s1.channel=c
4)运行flume
bin/flume-ng agent -c conf -f conf/flume-into-hive-1.conf -n agent
5)查询hdfs中的数据
hdfs dfs -cat /user/hive/warehouse/flume.db/flume_into_hive/dt=20221110/upload-.1668082651723.txt
6)在hive表中加载数据
load data inpath '/user/hive/warehouse/flume.db/flume_into_hive/dt=20221110' into table flume_into_hive partition(dt=20221110);
select * from flume_into_hive;
方法二:利用HiveSink汇入数据
1)从hive/lib和和hive/hcatalog/share/hcatalog/中找寻下列JAR包,放入到flume/lib中。
如果flume中有重名的则先删除flume中的再进行复制。
cp /jar包 想要存入的目录
2)编写flume的配置文件
vi flume-into-hive-2.conf
a1.sources = s1
a1.channels = c1
a1.sinks = k1
a1.sources.s1.type=exec
a1.sources.s1.command=tail -F /root/flume-hive/hive.log
a1.sinks.k1.type = hive
a1.sinks.k1.channel=c1
a1.sinks.k1.hive.metastore = thrift://node01:9083
a1.sinks.k1.hive.database = flume_hive
a1.sinks.k1.hive.table = flume_into_hive_1
a1.sinks.k1.useLocalTimeStamp = true
a1.sinks.k1.round = false
a1.sinks.k1.roundValue = 10
a1.sinks.k1.roundUnit = minute
a1.sinks.k1.serializer = DELIMITED
a1.sinks.k1.serializer.fieldnames =name,age
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=100
a1.sinks.k1.channel = c1
a1.sources.s1.channels = c1
3)在hive中创建表
create table flume_into_hive_1(name string,age int) clustered by (age) into 2 buckets stored as orc tblproperties("transactional"='true');
4)在hive中设置权限
set hive.support.concurrency=true;
set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
5)启动metastore服务
hive --service metastore -p 9083
6)运行flume
bin/flume-ng agent -c conf -f conf/hive/flume-into-hive-2.conf -n a1
7)查看表
二、HBaseSinks的三种序列化模式使用
1.SimpleHbaseEventSerializer
1)首先在HBase里面建立一个表flume-hbase-table,拥有colfamily1和colfamily2两个列族
create 'flume-hbase-table','colfamily1','colfamily2'
2)然后写一个flume的配置文件flume-into-hbase.conf:
agent.sources = r1
agent.channels = c1
agent.sinks = s1
agent.sources.r1.type = exec
agent.sources.r1.command = tail -F /root/flume-hbase/test.log
agent.sources.r1.checkperiodic = 50
agent.channels.c1.type = memory
agent.channels.c1.capacity = 1000
agent.channels.c1.transactionCapacity = 100
agent.sinks.s1.type = org.apache.flume.sink.hbase.HBaseSink
agent.sinks.s1.zookeeperQuorum=node01:2181
agent.sinks.s1.table=flume-hbase-table
#HBase表的列族名称
agent.sinks.s1.columnFamily=colfamily1
agent.sinks.s1.serializer = org.apache.flume.sink.hbase.SimpleHbaseEventSerializer
#HBase表的列族下的某个列名称
agent.sinks.s1.serializer.payloadColumn=column-1
agent.sources.r1.channels = c1
agent.sinks.s1.channel=c1
3)运行Flume:
bin/flume-ng agent -c conf -f conf/hbase/flume-into-hbase.conf -n agent -Dflume.root.logger=INFO,console
4)scan 'flume-hbase-table'
2.SimpleAsyncHbaseEventSerializer
1)编写flume-into-hbase-1.conf配置文件:
agent.sources = r1
agent.channels = c1
agent.sinks = s1
agent.sources.r1.type = exec
agent.sources.r1.command = tail -F /root/flume-hbase/test.log
agent.sources.r1.checkperiodic = 50
agent.channels.c1.type = memory
agent.channels.c1.capacity = 1000
agent.channels.c1.transactionCapacity = 100
agent.sinks.s1.type = org.apache.flume.sink.hbase.AsyncHBaseSink
agent.sinks.s1.zookeeperQuorum=node01:2181
agent.sinks.s1.table=flume-hbase-table
#HBase表的列族名称
agent.sinks.s1.columnFamily=colfamily2
agent.sinks.s1.serializer = org.apache.flume.sink.hbase.SimpleAsyncHbaseEventSerializer
#HBase表的列族下的某个列名称
agent.sinks.s1.serializer.payloadColumn=column-2
agent.sources.r1.channels = c1
agent.sinks.s1.channel=c1
2)运行flume:
bin/flume-ng agent -c conf -f conf/hbase/flume-into-hbase-2.conf -n agent -Dflume.root.logger=INFO,console
3)在hbase中查看
3.RegexHbaseEventSerializer
1)编写flume-into-hbase-2.conf配置文件:
agent.sources = r1
agent.channels = c1
agent.sinks = s1
agent.sources.r1.type = exec
agent.sources.r1.command = tail -F /root/flume-hbase/test.log
agent.sources.r1.checkperiodic = 50
agent.channels.c1.type = memory
agent.channels.c1.capacity = 1000
agent.channels.c1.transactionCapacity = 100
agent.sinks.s1.type = org.apache.flume.sink.hbase.HBaseSink
agent.sinks.s1.zookeeperQuorum=node01:2181
agent.sinks.s1.table=flume-hbase-table
#HBase表的列族名称
agent.sinks.s1.columnFamily=colfamily1
agent.sinks.s1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer
agent.sinks.s1.serializer.regex=\\[(.*?)\\]\\ \\[(.*?)\\]\\ \\[(.*?)\\]
agent.sinks.s1.serializer.colNames=time,url,number
agent.sources.r1.channels = c1
agent.sinks.s1.channel=c1
2)运行Flume:
bin/flume-ng agent -c conf -f conf/hbase/flume-into-hbase-3.conf -n agent -Dflume.root.logger=INFO,console
3)在/root/flume-hbase/test.log中添加如下数据:
[2022-05-17] [http://www.baidu.com] [20]
[2022-05-17] [http://www.bilibili.com] [25]
[2022-05-17] [http://www.qq.com] [26]