Dropout的过程
1)按照概率p,对输出的结果随机置零
代码验证:
#%%
import torch
import torch.nn as nn
#%% 模型
conv1 = nn.Conv2d(2,2,kernel_size=3,stride=1,padding=0)
m = nn.Dropout2d(p=0.4)
#%% 数据准备
N = 2
C = 2
H = 4
W = 4
input = torch.arange(N*C*H*W,dtype=torch.float32).view([N,C,H,W])
'''
1)按照概率p,对每个输入channel进行伯努利采样,随机采样到的channel置为0,输出
2)将1)的输出结果乘以1/(1-p)就是做了dropout的结果
'''
#%% 预测 没有做dropout
m.eval()
conv1_out = conv1(input)
dropout_out = m(conv1_out)
# print('conv1:',conv1_out)
print('没有做dropout:',dropout_out)
#%% 训练
m.train()
conv1_out = conv1(input)
dropout_out = m(conv1_out)
# print('conv1:',conv1_out)
print('做了dropout:',dropout_out)
结果:
没有做dropout: tensor([[[[-10.0299, -10.0603],
[-10.1516, -10.1820]],
[[ 5.0803, 5.3178],
[ 6.0304, 6.2679]]],
[[[-11.0039, -11.0343],
[-11.1256, -11.1560]],
[[ 12.6810, 12.9185],
[ 13.6311, 13.8686]]]], grad_fn=<ThnnConv2DBackward>)
做了dropout: tensor([[[[-16.7164, -16.7672],
[-16.9193, -16.9701]],
[[ 8.4672, 8.8631],
[ 10.0507, 10.4465]]],
[[[-18.3398, -18.3905],
[-18.5427, -18.5934]],
[[ 0.0000, 0.0000],
[ 0.0000, 0.0000]]]], grad_fn=<MulBackward0>)