#Copyright 2008-2021 Jacky Zong .All rights reserved .
# 殿下,
#为你战死是我至高无上的荣耀! -《离思五首》
import tensorflow as tf
from model import layers
__all__ = ['conv2d_block']
def conv2d_block(
inputs,
n_channels,
kernel_size=(3, 3),
strides=(2, 2),
mode='SAME',
use_batch_norm=True,
activation='relu',
is_training=True,
data_format='NHWC',
conv2d_hparams=None,
batch_norm_hparams=None,
name='conv2d',
cardinality=1,
):
if not isinstance(conv2d_hparams, tf.contrib.training.HParams):
raise ValueError("The paramater `conv2d_hparams` is not of type `HParams`")
if not isinstance(batch_norm_hparams, tf.contrib.training.HParams) and use_batch_norm:
raise ValueError("The paramater `conv2d_hparams` is not of type `HParams`")
with tf.variable_scope(name):
if cardinality == 1:
net = layers.conv2d(
inputs,
n_channels=n_channels,
kernel_size=kernel_size,
strides=strides,
padding=mode,
data_format=data_format,
use_bias=not use_batch_norm,
trainable=is_training,
kernel_initializer=conv2d_hparams.kernel_initializer,
bias_initializer=conv2d_hparams.bias_initializer)
else:
group_filter = tf.get_variable(
name=name + 'group_filter',
shape=[3, 3, n_channels // cardinality, n_channels],
trainable=is_training,
dtype=tf.float32)
net = tf.nn.conv2d(inputs,
group_filter,
strides=strides,
padding='SAME',
data_format=data_format)
if use_batch_norm:
net = layers.batch_norm(
net,
decay=batch_norm_hparams.decay,
epsilon=batch_norm_hparams.epsilon,
scale=batch_norm_hparams.scale,
center=batch_norm_hparams.center,
is_training=is_training,
data_format=data_format,
param_initializers=batch_norm_hparams.param_initializers
)
if activation == 'relu':
net = layers.relu(net, name='relu')
elif activation == 'tanh':
net = layers.tanh(net, name='tanh')
elif activation != 'linear' and activation is not None:
raise KeyError('Invalid activation type: `%s`' % activation)
return net