淘先锋技术网

首页 1 2 3 4 5 6 7


1 Zookeeper 入门

1.1 概述

Zookeeper 是一个开源的分布式的,为分布式应用提供协调服务的Apache 项目。

Zookeeper 工作机制
Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册, 一旦这些数据的状态发生变化,Zookeeper就将负责通知已经Zookeeper上注册的那些观察者做出相应的反应。
在这里插入图片描述

1.2 Zookeeper 特点

在这里插入图片描述
(1)Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。
(2)集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。
(3)全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。
(4)更新请求顺序进行,来自同一个Client的更新请求按其发送顺序依次执行。
(5)数据更新原子性,一次数据更新要么成功,要么失败。
(6)实时性,在一定时间范围内,Client能读到最新数据。

1.3 数据结构

ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识
在这里插入图片描述

1.4 应用场景

提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。

统一命名服务
在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。
在这里插入图片描述
统一配置管理
(1)分布式环境下,配置文件同步非常常见。
a. 一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。
b. 对配置文件修改后,希望能够快速同步到各个节点上。
(2)配置管理可交由ZooKeeper实现。
a. 可将配置信息写入Zookeeper上的一个Znode。
b. 各个客户端服务器监听这个Znode。
c. 一旦Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。
在这里插入图片描述
统一集群管理
(1)分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。
(2)ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。
在这里插入图片描述
服务器动态上下线
在这里插入图片描述
软负载均衡
在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。
在这里插入图片描述

2 Zookeeper 安装

2.1 本地模式安装部署

1 安装前准备

(1)安装 Jdk
(2)拷贝 Zookeeper安装 包 到 Linux系统下
(3)解压到指定目录

2 配置修改
/opt/module/zookeeper-3.5.9/conf 这个路径下的 zoo_sample.cfg修改为 zoo.cfg

[Tom@hadoop102 conf ]$ mv zoo_sample.cfg zoo.cfg

/opt/module/zookeeper-3.5.9/这个目录上创建zkData文件夹

[Tom@hadoop102 zookeeper-3.5.9]$ mkdir zkData

3 操作Zookeeper
(1)启动Zookeeper

[Tom@hadoop102 zookeeper-3.5.9]$ bin/zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper-3.5.9/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED

(2)查看进程是否启动

[Tom@hadoop102 zookeeper-3.5.9]$ jps
2257 QuorumPeerMain
2291 Jps

(3)查看状态

[Tom@hadoop102 zookeeper-3.5.9]$ bin/zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper-3.5.9/bin/../conf/zoo.cfg
Mode:standalone

(4)启动客户端

[Tom@hadoop102 zookeeper-3.5.9]$ bin/zkCli.sh

(5)退出客户端

[zk: localhost:2181(CONNECTED) 0] quit

(6)停止Zookeeper

[Tom@hadoop102 zookeeper-3.5.9]$ bin/zkServer.sh stop
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper-3.5.9/bin/../conf/zoo.cfg
Stopping zookeeper ... STOPPED

2.2 配置参数解读

# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial 
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between 
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just 
# example sakes.
dataDir=/opt/module/zookeeper-3.5.9/zkData
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the 
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1

#######################cluster##########################
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888

Zookeeper中的配置文件zoo.cfg中参数含义解读如下:
1. tickTime =2000:通信心跳数,Zookeeper服务器与客户端心跳时间,单位为毫秒
Zookeeper使用的基本时间,服务器之间或客户端与服务器之间维持心跳的时间间隔,也就是每个tickTime时间就会发送一个心跳,时间单位为毫秒。
它用于心跳机制,并且设置最小的session超时时间为两倍心跳时间。(session的最小超时时间是2*tickTime)

2. initLimit =10:LF初始通信时限
集群中的Follower跟随者服务器与Leader领导者服务器之间初始连接时能容忍的最多心跳数(tickTime的数量),用它来限定集群中的Zookeeper服务器连接到Leader的时限。

3. syncLimit =5: LF同步通信时限
集群中Leader与Follower之间的最大响应时间单位,假如响应超过syncLimit * tickTime,Leader认为Follwer死掉,从服务器列表中删除Follwer。

4. dataDir:数据文件目录 +数据持久化路径
主要用于保存 Zookeeper中的数据 。

5. clientPort =2181:客户端连接端口
监听客户端连接的端口

3 Zookeeper实战(开发重点)

3.1 分布式安装部署

1. 集群规划
在hadoop102、 hadoop103和 hadoop104三个节点上部署 Zookeeper。

2 解压安装
(1) 解压 Zookeeper安装包到 /opt/module/目录下

(2)同步 /opt/module/zookeeper-3.5.9目录内容到 hadoop103、 hadoop104

3.配置服务器编号
(1)在 /opt/module/zookeeper-3.5.9/这个目录下创建zkData

[Tom@hadoop102 zookeeper-3.5.9]$ mkdir -p zkData

(2)在 /opt/module/zookeeper-3.5.9/zkData目录下创建一个 myid的文件

[Tom@hadoop102 zkData]$ touch myid

添加myid文件,注意一定要在 linux里面创建,在 notepad++里面很可能乱码

(3)编辑 myid文件

[Tom@hadoop102 zkData] $ vim myid

在文件中添加与 server对应的编号:2

(4)拷贝配置好的 zookeeper到其他机器上

[Tom@hadoop102 zkData] xsync myid

并分别在 hadoop103、 hadoop104上修改myid文件中内容为 3、 4

4. 配置zoo.cfg文件
(1)重命名 /opt/module/zookeeper-3.4.10/conf这个目录下的 zoo_sample.cfgzoo.cfg

[Tom@hadoop102 conf]$ mv zoo_sample.cfg zoo.cfg

(2)打开 zoo.cfg文件

[Tom@hadoop102 conf]$ vim zoo.cfg

修改数据存储路径配置

dataDir=/opt/module/zookeeper-3.5.9/zkData

增加如下配置

#######################cluster##########################
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888

(3)同步 zoo.cfg配置文件

[Tom@hadoop102 conf]$ xsync zoo.cfg

(4)配置参数解读

server.A=B:C:D 。

A是一个数字,表示这个是第几号服务器;
集群模式下配置一个文件 myid,这个文件在 dataDir目录 下,这个文件里面有一个数据就是 A的值, Zookeeper启动时读取此文件,拿到里面的数据与 zoo.cfg里面的配置信息比较从而判断到底是哪个server。
B是这个服务器的地址;
C是这个服务器 Follower与集群中的 Leader服务器交换信息的端口;
D是万一集群中的 Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

4. 集群操作
(1)分别启动 Zookeeper

[Tom@hadoop102 zookeeper-3.5.9]$ bin/zkServer.sh start
[Tom@hadoop103 zookeeper-3.5.9]$ bin/zkServer.sh start
[Tom@hadoop104 zookeeper-3.5.9]$ bin/zkServer.sh start

(2)查看状态

[Tom@hadoop102 zookeeper-3.5.9]$ bin/zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper-3.5.9/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower

[Tom@hadoop103 zookeeper-3.5.9]$ bin/zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper-3.5.9/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: leader

[Tom@hadoop104 zookeeper-3.5.9]$ bin/zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/module/zookeeper-3.5.9/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower

3.2 客户端命令行操作

命令基本语法功能描述
help显示所有操作命令
ls path [watch]使用ls命令来查看当前znode中所包含的内容
ls2 path [watch]查看当前节点数据并能看到更新次数等数据
create普通创建: -s 含有序列、-e 临时(重启或者超时消失)
get path [watch]获得节点的值
set设置节点的具体值
stat查看节点状态
delete删除节点
rmr递归删除节点

1. 启动客户端

[Tom@hadoop102 zookeeper-3.5.9]$ bin/zkCli.sh 

2. 显示所有操作命令

[zk: localhost:2181(CONNECTED) 0] help
ZooKeeper -server host:port cmd args
	addauth scheme auth
	close 
	config [-c] [-w] [-s]
	connect host:port
	create [-s] [-e] [-c] [-t ttl] path [data] [acl]
	delete [-v version] path
	deleteall path
	delquota [-n|-b] path
	get [-s] [-w] path
	getAcl [-s] path
	history 
	listquota path
	ls [-s] [-w] [-R] path
	ls2 path [watch]
	printwatches on|off
	quit 
	reconfig [-s] [-v version] [[-file path] | [-members serverID=host:port1:port2;port3[,...]*]] | [-add serverId=host:port1:port2;port3[,...]]* [-remove serverId[,...]*]
	redo cmdno
	removewatches path [-c|-d|-a] [-l]
	rmr path
	set [-s] [-v version] path data
	setAcl [-s] [-v version] [-R] path acl
	setquota -n|-b val path
	stat [-w] path
	sync path
Command not found: Command not found help

3. 查看当前 znode中所包含的内容

[zk: localhost:2181(CONNECTED) 1] ls /
[admin, brokers, cluster, config, consumers, controller_epoch, hbase, isr_change_notification, latest_producer_id_block, zookeeper]

4. 查看当前节点详细数据

[zk: localhost:2181(CONNECTED) 2] ls2 /
'ls2' has been deprecated. Please use 'ls [-s] path' instead.
[cluster, controller_epoch, brokers, zookeeper, admin, isr_change_notification, consumers, latest_producer_id_block, config, hbase]
cZxid = 0x0
ctime = Thu Jan 01 08:00:00 CST 1970
mZxid = 0x0
mtime = Thu Jan 01 08:00:00 CST 1970
pZxid = 0xa00000004
cversion = 48
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 0
numChildren = 10
[zk: localhost:2181(CONNECTED) 3] ls -s /
[admin, brokers, cluster, config, consumers, controller_epoch, hbase, isr_change_notification, latest_producer_id_block, zookeeper]cZxid = 0x0
ctime = Thu Jan 01 08:00:00 CST 1970
mZxid = 0x0
mtime = Thu Jan 01 08:00:00 CST 1970
pZxid = 0xa00000004
cversion = 48
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 0
numChildren = 10

5. 分别创建2个普通节点

[zk: localhost:2181(CONNECTED) 4] create /sanguo "shuguo"
Created /sanguo
[zk: localhost:2181(CONNECTED) 5] create /sanguo/shuguo "liubei"
Created /sanguo/shuguo

6. 获得节点的值

[zk: localhost:2181(CONNECTED) 6] get /sanguo
shuguo
[zk: localhost:2181(CONNECTED) 7] get /sanguo/shuguo
liubei

7. 创建短暂节点

[zk: localhost:2181(CONNECTED) 8] create -e /sanguo/wuguo "zhouyu"
Created /sanguo/wuguo

(1)在当前客户端是能查看到的

[zk: localhost:2181(CONNECTED) 9] ls /sanguo
[shuguo, wuguo]

(2)退出当前客户端,然后再重启客户端

[zk: localhost:2181(CONNECTED) 10] quit
[Tom@hadoop102 zookeeper-3.5.9]$ bin/zkCli.sh

(3)再次查看根目录,短暂节点已经删除

[zk: localhost:2181(CONNECTED) 0] ls /sanguo
[shuguo]

8. 创建带序号的节点
(1)先创建一个普通的根节点 /sanguo/weiguo

[zk: localhost:2181(CONNECTED) 0] create /sanguo/weiguo "xuchu"
Created /sanguo/weiguo

(2)创建带序号的节点

[zk: localhost:2181(CONNECTED) 1] create -s /sanguo/weiguo/simayi "zhongda"
Created /sanguo/weiguo/simayi0000000000
[zk: localhost:2181(CONNECTED) 2] create -s /sanguo/weiguo/xuyou "zhongda"
Created /sanguo/weiguo/xuyou0000000001
[zk: localhost:2181(CONNECTED) 3] create -s /sanguo/weiguo/caozhen "zhongda"
Created /sanguo/weiguo/caozhen0000000002

如果原来没有序号节点 ,序号从0开始依次递增。 如果原节点下已有2个节点,则再排序时从 2开始,以此类推。
9. 修改节点数据值

10. 节点的值变化监听
(1)在 hadoop104主机上注册监听 /sanguo节点数据变化

[zk: localhost:2181(CONNECTED) 0] get /sanguo watch
'get path [watch]' has been deprecated. Please use 'get [-s] [-w] path' instead.
shuguo

(2)在 hadoop103主机上修改 /sanguo节点的数据

(3)观察 hadoop104主机收到数据变化的监听

[zk: localhost:2181(CONNECTED) 1] 
WATCHER::

WatchedEvent state:SyncConnected type:NodeDataChanged path:/sanguo

11. 节点的子节点变化监听(路径变化)
(1)在 hadoop104主机上注册监听/sanguo节点的子节点变化

[zk: localhost:2181(CONNECTED) 1] ls /sanguo watch
'ls path [watch]' has been deprecated. Please use 'ls [-w] path' instead.
[shuguo, weiguo]
[zk: localhost:2181(CONNECTED) 2] ls -w /sanguo
[shuguo, weiguo]

(2)在 hadoop103主机 /sanguo节点上创建子节点

[zk: localhost:2181(CONNECTED) 1] create /sanguo/jinguo "simayi"
Created /sanguo/jinguo

(3)观察 hadoop104主机收到子节点变化的监听

[zk: localhost:2181(CONNECTED) 3] 
WATCHER::

WatchedEvent state:SyncConnected type:NodeChildrenChanged path:/sanguo

12. 删除节点

[zk: localhost:2181(CONNECTED) 5] delete /sanguo/jinguo

13. 递归删除节点

[zk: localhost:2181(CONNECTED) 7] rmr /sanguo/shuguo
The command 'rmr' has been deprecated. Please use 'deleteall' instead.

14. 查看节点状态

[zk: localhost:2181(CONNECTED) 11] stat /sanguo
cZxid = 0x1300000002
ctime = Wed Aug 25 09:13:58 CST 2021
mZxid = 0x1400000009
mtime = Wed Aug 25 15:51:32 CST 2021
pZxid = 0x140000000c
cversion = 7
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 6
numChildren = 1

3.3 API应用

1. 创建一个 Maven工程

2. 添加 pom文件

<dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>RELEASE</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>2.8.2</version>
        </dependency>
        <!--https://mvnrepository.com/artifact/org.apache.zookeeper/zookeeper -->
        <dependency>
            <groupId>org.apache.zookeeper</groupId>
            <artifactId>zookeeper</artifactId>
            <version>3.5.9</version>
        </dependency>
    </dependencies>

3. 拷贝 log4j.properties文件到项目根目录
需要在项目的src/main/resources目录下,新建一个文件,命名为log4j.properties,在文件中填入。

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] -%m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] -%m%n

4. 编写Zookeeper测试代码

package com.Tom.zookeeper;

import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;
import org.junit.Before;
import org.junit.Test;

import java.io.IOException;
import java.util.List;

public class TestZookeeper {
    private String connectString = "hadoop102:2181,hadoop103:2181,hadoop104:2181";
    private int sessionTimeout = 2000;
    private ZooKeeper zkClient;

    @Before
    public void init() throws IOException {
        zkClient = new ZooKeeper(connectString, sessionTimeout, new Watcher() {

            @Override
            public void process(WatchedEvent event) {
                System.out.println("----------start----------");
                List<String> children;
                try {
                    children = zkClient.getChildren("/", true);

                    for (String child: children) {
                        System.out.println(child);
                    }
                    System.out.println("------------end----------");
                } catch (KeeperException e) {
                    e.printStackTrace();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
    }

    // 1 创建节点
    @Test
    public void createNode() throws KeeperException, InterruptedException {
        String path = zkClient.create("/sanguo1", "simayi".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);

        System.out.println(path);
    }

    // 2 获取子节点,并监控节点的变化
    @Test
    public void getDataAndWatch() throws KeeperException, InterruptedException {
        List<String> children = zkClient.getChildren("/", true);

        for (String child: children) {
            System.out.println(child);
        }

        Thread.sleep(Long.MAX_VALUE);
    }

    // 3 判断节点是否存在
    @Test
    public void exist() throws KeeperException, InterruptedException {
        Stat stat = zkClient.exists("/weigu", false);

        System.out.println(stat == null ? "no exist" : "exist");
    }
}

3.4 监听服务器节点动态上下线案例

需求
某分布式系统中,主节点可以有多台,可以动态上下线,任意一台客户端都能实时感知到主节点服务器的上下线。
在这里插入图片描述
客户端代码

package com.Tom.zookeeper;

import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DistributeClient {
    public static void main(String[] args) throws InterruptedException, IOException, KeeperException {
        DistributeClient client = new DistributeClient();
        
        // 1 获取zookeeper集群连接
        client.getConnect();
        
        // 2 注册监听
        client.getChlidren();
        
        // 3 业务逻辑处理
        client.business();
    }

    private void business() throws InterruptedException {
        Thread.sleep(Long.MAX_VALUE);
    }

    private void getChlidren() throws KeeperException, InterruptedException {
        List<String> children = zkClient.getChildren("/servers", true);

        // 存储服务器节点主机名称集合
        ArrayList<String> hosts = new ArrayList<>();

        for (String child : children){
            byte[] data = zkClient.getData("/servers/"+child, false, null);

            hosts.add(new String(data));
        }

        // 将所有在线主机名称打印到控制台
        System.out.println(hosts);
    }

    private String connectString = "hadoop102:2181,hadoop103:2181,hadoop104:2181";
    private int sessionTimeout = 2000;
    private ZooKeeper zkClient;

    private void getConnect() throws IOException {
         zkClient = new ZooKeeper(connectString, sessionTimeout, new Watcher() {
            @Override
            public void process(WatchedEvent watchedEvent) {
                try {
                    getChlidren();
                } catch (KeeperException e) {
                    e.printStackTrace();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
    }
}

服务端代码

package com.Tom.zookeeper;

import org.apache.zookeeper.*;

import java.io.IOException;

public class DistributeServer {
    public static void main(String[] args) throws InterruptedException, IOException, KeeperException {
        DistributeServer server = new DistributeServer();
        
        // 1 连接zookeeper集群
        server.getConnect();
        
        // 2 注册节点
        server.regist(args[0]);
        
        // 3 业务逻辑处理
        server.business();
    }

    private void business() throws InterruptedException {
        Thread.sleep(Long.MAX_VALUE);
    }

    private void regist(String hostname) throws KeeperException, InterruptedException {
        String path = zkClient.create("/servers/server", hostname.getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);

        System.out.println(hostname +" is online");
    }

    private String connectString = "hadoop102:2181,hadoop103:2181,hadoop104:2181";
    private int sessionTimeout = 2000;
    private ZooKeeper zkClient;

    private void getConnect() throws IOException {
        zkClient = new ZooKeeper(connectString, sessionTimeout, new Watcher() {
            @Override
            public void process(WatchedEvent event) {

            }
        });
    }
}

4 Zookeeper 内部原理

4.1 节点类型

在这里插入图片描述

4.2 Stat 结构体

(1)czxid-创建节点的事务zxid
每次修改ZooKeeper 状态都会收到一个zxid 形式的时间戳,也就是ZooKeeper 事务ID。
事务ID 是ZooKeeper 中所有修改总的次序。每个修改都有唯一的zxid,如果zxid1 小于zxid2,那么zxid1 在zxid2 之前发生。
(2)ctime - znode 被创建的毫秒数(从1970 年开始)
(3)mzxid - znode 最后更新的事务zxid
(4)mtime - znode 最后修改的毫秒数(从1970 年开始)
(5)pZxid-znode 最后更新的子节点zxid
(6)cversion - znode 子节点变化号,znode 子节点修改次数
(7)dataversion - znode 数据变化号
(8)aclVersion - znode 访问控制列表的变化号
(9)ephemeralOwner- 如果是临时节点,这个是znode 拥有者的session id。如果不是临时节点则是0。
(10)dataLength- znode 的数据长度
(11)numChildren - znode 子节点数量

4.3 监听器原理(面试重点)

在这里插入图片描述

4.4 选举机制

1. 半数机制:集群中半数以上机器存活,集群可用。所以Zookeeper 适合安装奇数台服务器。

2. Zookeeper 虽然在配置文件中并没有指定Master 和Slave。但是,Zookeeper 工作时,是有一个节点为Leader,其他则为Follower,Leader 是通过内部的选举机制临时产生的。

3. 以一个简单的例子来说明整个选举的过程。
假设有五台服务器组成的Zookeeper 集群,它们的id 从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的。假设这些服务器依序启动,来看看会发生什么,如下图所示。
在这里插入图片描述
(1)服务器1 启动,发起一次选举。服务器1 投自己一票。此时服务器1 票数一票,不够半数以上(3 票),选举无法完成,服务器1 状态保持为LOOKING;
(2)服务器2 启动,再发起一次选举。服务器1 和2 分别投自己一票并交换选票信息:此时服务器1 发现服务器2 的ID 比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1 票数0 票,服务器2 票数2 票,没有半数以上结果,选举无法完成,服务器1,2 状态保持LOOKING;
(3)服务器3 启动,发起一次选举。此时服务器1 和2 都会更改选票为服务器3。此次投票结果:服务器1 为0 票,服务器2 为0 票,服务器3 为3 票。此时服务器3 的票数已经超过半数,服务器3 当选Leader。服务器1,2 更改状态为FOLLOWING,服务器3 更改状态为LEADING;
(4)服务器4 启动,发起一次选举。此时服务器1,2,3 已经不是LOOKING 状态,不会更改选票信息。交换选票信息结果:服务器3 为3 票,服务器4 为1 票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;
(5)服务器5 启动,同4 一样为FOLLOWING。


参考:
https://www.bilibili.com/video/BV1PW411r7iP?p=22