✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
本文研究了无人驾驶飞行器(UAV)在3维(3D)空间中的最佳放置,以建立基站(BS)和地面用户之间的连接。一个关键的挑战是如何避免障碍物造成的信号传播阻断。许多先前的工作使用概率地形模型,其模型参数是从大面积的统计数据中学习的,因此,对小范围内的特定用户的优化是很差的。相比之下,本文在实际的、细粒度的地形上寻求最优的无人机位置,并开发了高效的无人机定位策略,以适应飞行中测得的位置相关的视线(LOS)条件的程度。实验证明,全局最优的无人机三维位置可以从所提出的搜索轨迹中确定,该轨迹的长度仅相当于目标区域的直径。因此,建议的策略可以实际执行。在现实世界的城市拓扑结构上进行了数值实验,证明了比基于概率模型的现有策略更优越的性能增益。
地理数据
使用2013年在美国华盛顿特区中部捕获的地理数据来研究通信环境。原始地理数据集可在美国地质调查局数据库中找到:http://ngmdb.usgs.gov。
⛄ 部分代码
%% Optimal UAV Placement in 3D Space
% Demonstration of hte UAV search trajectory in 3D space under the genernal
clear
addpath ../uavLibrary
addpath ../..
DATA = load('../uavDataset/urbanMapSingleUser.mat');
U = DATA.U;
U.Hmax = 120;
% PosUE = [342, 237];
% PosUE = [94.0212 739.6973];
% PosUE = [498.8438 504.1995];
% PosUE = [99, 400];
% PosUE = [171, 258];
PosUE = [512, 644];
% PosUE = [ 220.6620 743.5349];
PosBS = [150, 770];
% DATA = load('../uavDataset/urbanMapK_1m.mat');
DATA = load('../uavDataset/urbanMap_DC.mat');
Maps = DATA.Maps;
[MapWidth, MapHeight] = size(Maps{1});
Blds = DATA.BldArea;
stepsize = DATA.stepsize;
meterPerPixel = stepsize;
map_x0 = DATA.x0;
map_x0 = [0, 0];
Xvec = DATA.Xvec;
Yvec = DATA.Yvec;
U.K = length(Maps) + 1; K = U.K;
urbanMap = zeros(MapWidth, MapHeight);
for k = 1:U.K - 1
urbanMap = urbanMap + Maps{k};
end
% Radio Configuration and initialization
U.A0 = -22; U.B0 = -40; % UAV-BS channel
U.A1 = -22.7; U.B1 = -28; U.S1 = 1; % Propagation segment 1 (LOS)
U.A2 = -28.4; U.B2 = -24; U.S2 = 3; % Propagation segment 2
U.A3 = -36.4; U.B3 = -22; U.S3 = 3; % Propagation segment 3 (NLOS)
% U.K = 3;
U.Alpha = [-22.7, -28.4, -36.5];
U.Beta= [-28, -24, -22];
U.Noise = 1e-10; U.Pb = 2; U.Pd = 2;
U.Hbs = 45;
U.Hmin = 45; % Minimum UAV operation height
U.Hdrone = 50;
% Rmap.Alpha = [-20, -40]; Rmap.Beta = [-40, -40]; Rmap.Sigma2 = [3, 8]; Rmap.Pi = [0.3, 0.7];
% Chann.A0 = U.A0; Chann.B0 = U.B0; Chann.Noise = U.Noise;
stepSizeMeter = 3;
%% User Location
% PosUE = rand(1, 2) * 500 + 400;
% PosUE = [660.8249 448.3650];
% PosUE = [590, 740]; % Case where optimal solution is in k=2 segment.
% % Random USER location
% inBld = 1;
% while inBld
% pos = rand(1, 2) * 500 + 400;
% inBld = 0;
% for ib = 1:Nbld
% in = inpoly(pos, Blds{ib, 1});
% if in
% inBld = 1;
% break
% end
% end
% end
% PosUE = pos;
%% Objective function
% Alternatively, you can also create a fun.m file to specify the objective function
% fun(x, y), where the argument x is the UAV-USER SNR and y is the UAV-BS SNR
%
% Supported functions: $f(x,y)=\max \{-\log_2(1+P_dx),-\log_2(1+P_b(y)\}$,$f(x,y)
% = a_1f_1(x)+a_2f_x(y)$
% fun = @(x,y) max(-log2(1 + U.Pd * real(x)), -log2(1 + U.Pb * real(y)));
% fun = @(x,y) log(1 ./ (U.Pd * real(x)) + 1 ./ (U.Pb * real(y) * real(x) * U.Pd));
% General configurations
funs = cell(K, 1);
funs0 = cell(K, 1);
% 3GPP UMi model:
fc_3gpp = 2.5; % carrier frequency = 2.5 GHz
floss_3gpp = 10;
bstxpower_dBm = 20;
uavtxpower_dBm = 17;
noise_figure = 7; % 7 dB
bw_3gpp = 20e6; % 20 MHz
snr_backoff = 3; % 3 dB SNR backoff for rate estimation compared from AWGN channel
modulation_cutoff = 9.84;
pl3gpp = cell(3, 1); r1_3gpp = cell(3, 1); r0_3gpp = cell(3, 1);
snr0_3gpp = cell(3, 1); snr1_3gpp = cell(3, 1);
snr0_mmw = cell(3, 1); snr1_mmw = cell(3, 1);
pl3gpp{1} = @(d) 22.0 + 28.0 * log10(d) + 20 * log10(fc_3gpp);
pl3gpp{2} = @(d) 22.0 + 28.0 * log10(d) + 20 * log10(fc_3gpp) + floss_3gpp;
pl3gpp{3} = @(d) 22.7 + 36.7 * log10(d) + 26 * log10(fc_3gpp);
for k = 1:3
snr0 = @(d) 174 + bstxpower_dBm - pl3gpp{k}(d) - 10*log10(bw_3gpp) - noise_figure;
r0_3gpp{k} = @(d) min(log2(1 + 10.^((snr0(d) - snr_backoff)/10)), modulation_cutoff);
snr0_3gpp{k} = @(d) 10.^(snr0(d) / 10);
snr1 = @(d) 174 + uavtxpower_dBm - pl3gpp{k}(d) - 10*log10(bw_3gpp) - noise_figure;
r1_3gpp{k} = @(d) min(log2(1 + 10.^((snr1(d) - snr_backoff)/10)), modulation_cutoff);
snr1_3gpp{k} = @(d) 10.^(snr1(d) / 10);
end
% mmWave model at 28 GHz
floss_mmw = 20;
GainBf = 25; % 25 dB beamforming gain
bw_mmw = 1000e6; % 1 GHz
plmmw = cell(3, 1); r0_mmw = cell(3, 1); r1_mmw = cell(3, 1);
plmmw{1} = @(d) 61.4 + 20 * log10(d);
plmmw{2} = @(d) 61.4 + 20 * log10(d) + floss_mmw;
plmmw{3} = @(d) 72.0 + 29.2 * log10(d);
for k = 1:3
snr0 = @(d) 174 + bstxpower_dBm - plmmw{k}(d) - 10*log10(bw_mmw) - noise_figure + GainBf;
r0_mmw{k} = @(d) min(log2(1 + 10.^((snr0(d) - snr_backoff)/10)), modulation_cutoff);
snr0_mmw{k} = @(d) 10.^(snr0(d) / 10);
snr1 = @(d) 174 + uavtxpower_dBm - plmmw{k}(d) - 10*log10(bw_mmw) - noise_figure + GainBf;
r1_mmw{k} = @(d) min(log2(1 + 10.^((snr1(d) - snr_backoff)/10)), modulation_cutoff);
snr1_mmw{k} = @(d) 10.^(snr1(d) / 10);
end
% % -------------------------------------------------------------------------
% % Scenario Ia: Rate maximization problem I (K = 3 case). Similar to the 2D
% % paper
% SCENARIO = 11;
% for k = 1:K
% gainu = @(x) 10 ^ ((U.Alpha(k) * log10(x) + U.Beta(k)) / 10) / U.Noise;
% gainb = @(y) 10 ^ ((U.A0 * log10(y) + U.B0) / 10) / U.Noise;
% % f = fun(gainu, gainb);
% fun = @(x,y) max(-log2(1 + U.Pd * real(gainu(x))), ...
% -log2(1 + U.Pb * real(gainb(y)))) * 1e-6;
% funs{k} = fun;
%
% gainb2 = @(x) 10 ^ ((U.Alpha(k) * log10(x) + U.Beta(k)) / 10) / U.Noise;
% fun0 = @(x) -log2(1 + U.Pb * gainb2(x)) * 1e-6;
% funs0{k} = fun0;
% end
% obj_sign = - 1;
% -------------------------------------------------------------------------
% % Scenario Ib: Rate maximization problem I (K = 3 case). Similar to the 2D
% % paper
% SCENARIO = 12;
% for k = 1:3
% funs{k} = @(x,y) - min(r1_3gpp{k}(x), r0_3gpp{1}(y));
% funs0{k} = @(x) - r0_3gpp{k}(x);
% end
% obj_sign = - 1;
% -------------------------------------------------------------------------
% % Scenario II: Outage probability minimization. Similar to the 2D paper
% SCENARIO = 2;
% target_rate = 2;
% for k = 1:K
% funs{k} = @(x,y) (1/snr1_mmw{k}(x) + 1/snr0_mmw{1}(y));% * (2^(2 * target_rate) - 1)^2;
% funs0{k} = @(x) (1/snr0_mmw{k}(x));% * (2^(target_rate) - 1)^2;
% end
% obj_sign = 1;
% % -------------------------------------------------------------------------
% Scenario III: mmWave & 3GPP UMi hybrid system
% SCENARIO = 3;
% funs{1} = @(x,y) - 0.5 * min(r1_mmw{1}(x) * bw_mmw, r0_mmw{1}(y) * bw_mmw) / 1e9; % Tbit
% funs{2} = @(x,y) - 0.5 * min(r1_mmw{2}(x) * bw_mmw, r0_mmw{1}(y) * bw_mmw) / 1e9; % Tbit
% funs{3} = @(x,y) - 0.5 * min(r1_3gpp{3}(x) * bw_3gpp, r0_mmw{1}(y) * bw_mmw) / 1e9; % Tbit
% funs0{1} = @(x) - r0_mmw{1}(x) * bw_mmw / 1e9; % Tbit
% funs0{2} = @(x) - r0_mmw{2}(x) * bw_mmw / 1e9; % Tbit
% funs0{3} = @(x) - r0_3gpp{3}(x) * bw_3gpp / 1e9; % Tbit
%
% obj_sign = - 1;
% % -------------------------------------------------------------------------
% % Scenario IV: Energy constrained deliveray
% SCENARIO = 4;
% Battery_Wh = 80; % Watt.hour = 3.6kJ, battery capacity
% Pu_hover = 200; % Watt, hovering power
% Pu_cruise = 200; % Watt, cruise power
% Pt_circuit = 2; % watt, Circuit power
% cruise_velocity = 5; % m/s
%
% txtime = @(d) (Battery_Wh * 3600 - Pu_cruise * d * 2 / cruise_velocity) / (Pu_hover + Pt_circuit + 10^(uavtxpower_dBm / 10)/1000);
% funs{1} = @(x,y) - min(r1_mmw{1}(x) * bw_mmw, r0_mmw{1}(y) * bw_mmw) / 1e12 * txtime(y); % Tbit
% funs{2} = @(x,y) - min(r1_mmw{2}(x) * bw_mmw, r0_mmw{1}(y) * bw_mmw) / 1e12 * txtime(y); % Tbit
% funs{3} = @(x,y) - min(r1_3gpp{3}(x) * bw_3gpp, r0_mmw{1}(y) * bw_mmw) / 1e12 * txtime(y); % Tbit
% funs0{1} = @(x) - r0_mmw{1}(x) * bw_mmw / 1e12 * txtime(0); % Tbit
% funs0{2} = @(x) - r0_mmw{2}(x) * bw_mmw / 1e12 * txtime(0); % Tbit
% funs0{3} = @(x) - r0_3gpp{3}(x) * bw_3gpp / 1e12 * txtime(0); % Tbit
%
% obj_sign = - 1;
% % -------------------------------------------------------------------------
% % Scenario V: Energy minimization for message delivery
SCENARIO = 5;
Pu_hover = 200; % Watt, hovering power
Pu_cruise = 200; % Watt, cruise power
Pt_circuit = 2; % watt, Circuit power
cruise_velocity = 5; % m/s
Bits_Gb = 10; % Giga bits
txtime = cell(3, 1);
for k = 1:3
txtime{k} = @(d) Bits_Gb * 1e9 / (bw_mmw * 0.5 * r1_mmw{k}(d));
funs{k} = @(d1, d0) Pu_cruise * d0 / cruise_velocity ...
+ (Pu_hover + Pt_circuit + 10^(uavtxpower_dBm / 10)/1000) * txtime{k}(d1);
end
obj_sign = 1;
%% Urban Map
uid = round(PosUE / stepsize);
show_map(Xvec, Yvec, urbanMap, Blds, 1);hold on
plot3(PosBS(1), PosBS(2), 50, 'r^', 'linewidth', 2, 'markersize', 9);
plot3(PosUE(1), PosUE(2), 50, 'ro', 'linewidth', 2, 'markersize', 9);hold off
%% Radio Map
Npt = 70;
% Xrange = Xvec(1) + (0:1/(Npt - 1):1) * MapWidth;
% Yrange = Yvec(1) + (0:1/(Npt - 1):1) * MapHeight;
% Lshow = 50;
% Xrange = PosUE(1) + ((0:1/(Npt - 1):1) - 0.5) * Lshow;
% Yrange = PosUE(2) + ((0:1/(Npt - 1):1) - 0.5) * Lshow;
midpos = (PosUE(1:2) + PosBS(1:2)) / 2;
L = norm(PosUE - PosBS);
Xrange = midpos(1) + ((0:1/(Npt - 1):1) - 1/2) * L;
Yrange = midpos(2) + ((0:1/(Npt - 1):1) - 1/2) * L;
[Xmat, Ymat] = meshgrid(Xrange, Yrange);
Pmat = zeros(Npt);Cmat = zeros(Npt);Cmat3d = zeros(Npt);Hmat = zeros(Npt);
for i = 1:Npt
for j = 1:Npt
Upos = [Xrange(i), Yrange(j)];
du2u = norm([Upos, U.Hdrone] - [PosUE, 0]);
% los = IsLosK(PosUE, Upos, BldLines, BldHeight, U.Hdrone, BldTypes);
los = IsLosK_discrete([PosUE, 0], [Upos, U.Hdrone], Maps, stepsize, map_x0);
if abs(los - 1) < 1e-9 % propagation segmen 1
gain_dB = log10(du2u) * U.A1 + U.B1;
elseif abs(los - (1-1/(K-1))) < 1e-9 % propagation segment 2
gain_dB = log10(du2u) * U.A2 + U.B2;
else
gain_dB = log10(du2u) * U.A3 + U.B3;
end
Pmat(i, j) = gain_dB;
% f2 = getcostf2d([Upos, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, funs);
% Cmat(i, j) = f2;
[f3, lopt] = getcostf3d([Upos, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, funs);
Cmat3d(i, j) = f3;
Hmat(i, j) = sqrt(lopt^2 - norm(Upos(1:2) - PosUE(1:2), 2)^2);
end
end
show_map(Xrange, Yrange, Pmat, [], 2); title('Power map');
show_map(Xrange, Yrange, Cmat3d, [], 3); title('Capacity map (3d)');clim = caxis;
% show_map(Xrange, Yrange, Cmat, [], 4); title('Capacity map (2d)');caxis(clim);
%% Search Algorithm for Optimal UAV Position in 3D
%
PosUE3 = [PosUE, 0];
PosBS3 = [PosBS, U.Hbs];
Uvec = (PosBS(1:2) - PosUE(1:2)) / norm(PosBS(1:2) - PosUE(1:2), 2);
maxStep = ceil((2.4 * U.K - 1.4) * norm(PosBS(1:2) - PosUE(1:2), 2) / stepSizeMeter);
Fmin = inf;
Xhat3 = [0, 0, 0];
Xhat2 = [0, 0];
XposArray = zeros(maxStep, 2);
FArray = zeros(maxStep, 1);
Xpos = PosBS;
Stage = 1;
cnt = 0;
Rhos = zeros(1, maxStep); % Record for Stage 1, rho value along the way
ks = zeros(1, maxStep); % Record for stage 1, segment label along the way
ksearch = 1;
while Stage < 4 && cnt < maxStep
cnt = cnt + 1;
Xpos0 = Xpos; % UAV Position
% los = IsLosK(PosUE, Xpos0, BldLines, BldHeight, U.Hdrone, BldTypes);
los = IsLosK_discrete([PosUE, 0], [Xpos0, U.Hdrone], Maps, meterPerPixel, map_x0);
ksegment = round((1 - los) * (U.K - 1) + 1); % propagation segment index, k = 1,2,...,K
[f, ~, Xpos3] = getcostf3d([Xpos0, U.Hdrone], [PosUE, 0], [PosBS, U.Hbs], los, U, funs);
FArray(cnt) = f;
XposArray(cnt, :) = Xpos0;
if f < Fmin
Fmin = f;
Xhat3 = Xpos3;
end
if Stage == 1
% Stage 1: Search on the User-BS axis
if ksegment == 1 % LOS segment
Rhos(cnt) = norm(PosUE(1:2) - Xpos0(1:2), 2);
ks(cnt) = 1;
Rhos0 = findCriticalPoints3d(Rhos, ks, [Xpos0, U.Hdrone], PosUE3, PosBS3, U, funs);
rho0 = Rhos0(ksearch);
theta0 = stepSizeMeter / rho0;
M = [cos(theta0), -sin(theta0)
sin(theta0), cos(theta0)];
Xpos = PosUE + (rho0 * M * Uvec(:)).';
Stage = 2;
elseif norm(PosUE - Xpos0) > stepSizeMeter
Rhos(cnt) = norm(PosUE(1:2) - Xpos0(1:2), 2);
ks(cnt) = ksegment;
searchDirection = (PosUE - PosBS) / norm(PosUE - PosBS);
Xpos = Xpos0 + searchDirection * stepSizeMeter;
else
% Indoor case
Stage = 4;
end
elseif Stage == 2
% Stage 2: Search on the right branch
searchDirection = uavSearchDirection_3d([Xpos, U.Hdrone], ...
PosUE3, PosBS3, ksegment, ksearch, U, funs);
%
Xpos = Xpos0 + searchDirection * stepSizeMeter;
if norm(searchDirection) < 1e-10
rho0 = Rhos0(ksearch);
theta0 = - stepSizeMeter / rho0;
M = [cos(theta0), -sin(theta0)
sin(theta0), cos(theta0)];
Xpos = PosUE + (rho0 * M * Uvec(:)).';
Stage = 3;
end
elseif Stage == 3
% Stage 3: Search on the left branch
searchDirection = uavSearchDirection_3d([Xpos, U.Hdrone], ...
PosUE3, PosBS3, ksegment, ksearch, U, funs);
%
Xpos = Xpos0 + searchDirection * stepSizeMeter;
if norm(searchDirection) < 1e-10
ksearch = ksearch + 1;
if ksearch < U.K
rho0 = Rhos0(ksearch);
theta0 = stepSizeMeter / rho0;
M = [cos(theta0), -sin(theta0)
sin(theta0), cos(theta0)];
Xpos = PosUE + (rho0 * M * Uvec(:)).';
Stage = 2;
else
Stage = 4; % Algorithm terminates
end
end
else
% The entire algorithm terminates
end
end
Xopt = Xhat3;
Fmin = obj_sign * Fmin;
%
figure(3), hold on
title(sprintf('3D Capacity Map, obj = %f, pos = (%d,%d,%d)', Fmin, round(Xopt)));
for t = 1:cnt
plot3(XposArray(t, 1), XposArray(t, 2), abs(FArray(t) - 1e-3), 's', 'linewidth', 1, 'markersize', 4, 'color', [0,1,0]);
end
plot3(Xhat2(1), Xhat2(2), abs(Fmin - 1e-3), 'xk', 'linewidth', 2, 'markersize', 11); hold off
% %
⛄ 运行结果
⛄ 参考文献
[1] Chen J , Mitra U , Gesbert D . 3D Urban UAV Relay Placement: Linear Complexity Algorithm and Analysis[J]. IEEE transactions on wireless communications, 2021(20-8).
⛳️ 完整代码
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料