文章目录
目的
继基础篇分析了开发调优与资源调优之后,本文作为拓展篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。
数据倾斜调优
简述
有时候,大家可能会遇到大数据开发过程中一个比较棘手的问题,那就是数据倾斜,此时Spark作业的性能会比预期差很多,数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。
数据倾斜发生时的现象
绝大多数task执行得都非常快,但个别task执行极慢。比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时。这种情况很常见。
原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,观察异常栈,是我们写的业务代码造成的。这种情况比较少见。