HoodieDeltaStreamer工具 (hudi-utilities-bundle中的一部分) 提供了从DFS或Kafka等不同来源进行摄取的方式,并具有以下功能:
1.精准一次从Kafka采集新数据,从Sqoop、HiveIncrementalPuller的输出或DFS文件夹下的文件增量导入。
2.导入的数据支持json、avro或自定义数据类型。
3.管理检查点,回滚和恢复。
4.利用 DFS 或 Confluent schema registry的 Avro Schema。
5.支持自定义转换操作。
命令说明
执行如下命令,查看帮助文档:
spark-submit --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer /opt/software/hudi-0.12.0/packaging/hudi-utilities-bundle/target/hudi-utilities-bundle_2.12-0.12.0.jar --help
Schema Provider和Source配置项:https://hudi.apache.org/docs/hoodie_deltastreamer
下面以File Based Schema Provider和JsonKafkaSource为例:
准备Kafka数据
(1)启动kafka集群,创建测试用的topic
bin/kafka-topics.sh --bootstrap-server hadoop1:9092 --create --topic hudi_test
(2)准备java生产者代码往topic发送测试数据
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.4.1</version>
</dependency>
<!--fastjson <= 1.2.80 存在安全漏洞,-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.83</version>
</dependency>
package com.atguigu.util;
import com.alibaba.fastjson.JSONObject;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.Random;
public class TestKafkaProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop1:9092,hadoop2:9092,hadoop3:9092");
props.put("acks", "-1");
props.put("batch.size", "1048576");
props.put("linger.ms", "5");
props.put("compression.type", "snappy");
props.put("buffer.memory", "33554432");
props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);
Random random = new Random();
for (int i = 0; i < 1000; i++) {
JSONObject model = new JSONObject();
model.put("userid", i);
model.put("username", "name" + i);
model.put("age", 18);
model.put("partition", random.nextInt(100));
producer.send(new ProducerRecord<String, String>("hudi_test", model.toJSONString()));
}
producer.flush();
producer.close();
}
}
准备配置文件
(1)定义arvo所需schema文件(包括source和target)
mkdir /opt/module/hudi-props/
vim /opt/module/hudi-props/source-schema-json.avsc
{
"type": "record",
"name": "Profiles",
"fields": [
{
"name": "userid",
"type": [ "null", "string" ],
"default": null
},
{
"name": "username",
"type": [ "null", "string" ],
"default": null
},
{
"name": "age",
"type": [ "null", "string" ],
"default": null
},
{
"name": "partition",
"type": [ "null", "string" ],
"default": null
}
]
}
cp source-schema-json.avsc target-schema-json.avsc
(2)拷贝hudi配置base.properties
cp /opt/software/hudi-0.12.0/hudi-utilities/src/test/resources/delta-streamer-config/base.properties /opt/module/hudi-props/
(3)根据源码里提供的模板,编写自己的kafka source的配置文件
cp /opt/software/hudi-0.12.0/hudi-utilities/src/test/resources/delta-streamer-config/kafka-source.properties /opt/module/hudi-props/
vim /opt/module/hudi-props/kafka-source.properties
include=hdfs://hadoop1:8020/hudi-props/base.properties
hoodie.datasource.write.recordkey.field=userid
hoodie.datasource.write.partitionpath.field=partition
hoodie.deltastreamer.schemaprovider.source.schema.file=hdfs://hadoop1:8020/hudi-props/source-schema-json.avsc
hoodie.deltastreamer.schemaprovider.target.schema.file=hdfs://hadoop1:8020/hudi-props/target-schema-json.avsc
hoodie.deltastreamer.source.kafka.topic=hudi_test
#Kafka props
bootstrap.servers=hadoop1:9092,hadoop2:9092,hadoop3:9092
auto.offset.reset=earliest
group.id=test-group
(4)将配置文件上传到hdfs
拷贝所需jar包到Spark
cp /opt/software/hudi-0.12.0/packaging/hudi-utilities-bundle/target/hudi-utilities-bundle_2.12-0.12.0.jar /opt/module/spark-3.2.2/jars/
需要把hudi-utilities-bundle_2.12-0.12.0.jar放入spark的jars路径下,否则报错找不到一些类和方法。
运行导入命令
spark-submit \
--class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer \
/opt/module/spark-3.2.2/jars/hudi-utilities-bundle_2.12-0.12.0.jar \
--props hdfs://hadoop1:8020/hudi-props/kafka-source.properties \
--schemaprovider-class org.apache.hudi.utilities.schema.FilebasedSchemaProvider \
--source-class org.apache.hudi.utilities.sources.JsonKafkaSource \
--source-ordering-field userid \
--target-base-path hdfs://hadoop1:8020/tmp/hudi/hudi_test \
--target-table hudi_test \
--op BULK_INSERT \
--table-type MERGE_ON_READ
查看导入结果
(1)启动spark-sql
spark-sql \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' \
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'
(2)指定location创建hudi表
use spark_hudi;
create table hudi_test using hudi
location 'hdfs://hadoop1:8020/tmp/hudi/hudi_test'
(3)查询hudi表