WFP框架是微软推出来替代TDIHOOK传输层驱动接口网络通信的方案,其默认被设计为分层结构,该框架分别提供了用户态与内核态相同的AIP函数,在两种模式下均可以开发防火墙产品,以下代码我实现了一个简单的驱动过滤防火墙。
WFP 框架分为两大层次模块,用户态基础过滤引擎BFE (BaseFilteringEngine)
,以及内核态过滤引擎 KMFE (KMFilteringEngine)
,基础过滤引擎对上提供C语言调用方式的API以及RPC接口,这些接口都被封装在FWPUCLNT.dll
模块中,开发时可以调用该模块中的导出函数.
- WFP程序工作流程:
- 使用 FwpmEngineOpen() 开启 WFP 引擎,获得WFP使用句柄
- 使用 FwpmTransactionBegin() 设置对网络通信内容的过滤权限 (只读/允许修改)
- 使用 FwpsCalloutRegister(),FwpmCalloutAdd(),FwpmFilterAdd() 选择要过滤的内容,并添加过滤器对象和回调函数.
- 使用 FwpmTransactionCommit() 确认刚才的内容,让刚才添加的回调函数开始生效.
- 使用 FwpmFilterDeleteById(),FwpmCalloutDeleteById(),FwpsCalloutUnregisterById()函数撤销对象和回调函数.
- 使用 FwpmEngineClose() 关闭WFP引擎类句柄.
默认情况下WFP一次需要注册3个回调函数,只有一个是事前回调,另外两个是事后回调,通常情况下我们只关注事前回调即可,此外WFP能过滤很对内容,我们需要指定过滤条件标志来输出我们所需要的数据.
- 一般可设置为
FWPM_LAYER_ALE_AUTH_CONNECT_V4
意思是设置IPV4过滤. - 还需要设置一个GUID值,该值可随意设置,名称为
GUID_ALE_AUTH_CONNECT_CALLOUT_V4
宏.
首先我们通过上方的流程实现一个简单的网络控制驱动,该驱动运行后可对自身机器访问指定地址端口进行控制,例如实现指定应用断网,禁止指定页面被访问等,在配置WFP开发环境时需要在链接器选项卡中的附加依赖项中增加fwpkclnt.lib,uuid.lib
这两个库文件,并且需要使用WDM开发模板,否则编译将不通过。
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: [email protected]
#define NDIS_SUPPORT_NDIS6 1
#define DEV_NAME L"\\Device\\MY_WFP_DEV_NAME"
#define SYM_NAME L"\\DosDevices\\MY_WFP_SYM_NAME"
#include <ntifs.h>
#include <fwpsk.h>
#include <fwpmk.h>
#include <stdio.h>
// 过滤器引擎句柄
HANDLE g_hEngine;
// 过滤器引擎中的callout的运行时标识符
ULONG32 g_AleConnectCalloutId;
// 过滤器的运行时标识符
ULONG64 g_AleConnectFilterId;
// 指定唯一UUID值(只要不冲突即可,内容可随意)
GUID GUID_ALE_AUTH_CONNECT_CALLOUT_V4 = { 0x6812fc83, 0x7d3e, 0x499a, 0xa0, 0x12, 0x55, 0xe0, 0xd8, 0x5f, 0x34, 0x8b };
// ------------------------------------------------------------------------------
// 头部函数声明
// ------------------------------------------------------------------------------
// 注册Callout并设置过滤点
NTSTATUS RegisterCalloutForLayer(
IN PDEVICE_OBJECT pDevObj,
IN const GUID *layerKey,
IN const GUID *calloutKey,
IN FWPS_CALLOUT_CLASSIFY_FN classifyFn,
IN FWPS_CALLOUT_NOTIFY_FN notifyFn,
IN FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN flowDeleteNotifyFn,
OUT ULONG32 *calloutId,
OUT ULONG64 *filterId,
OUT HANDLE *engine);
// 注册Callout
NTSTATUS RegisterCallout(
PDEVICE_OBJECT pDevObj,
IN const GUID *calloutKey,
IN FWPS_CALLOUT_CLASSIFY_FN classifyFn,
IN FWPS_CALLOUT_NOTIFY_FN notifyFn,
IN FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN flowDeleteNotifyFn,
OUT ULONG32 *calloutId);
// 设置过滤点
NTSTATUS SetFilter(
IN const GUID *layerKey,
IN const GUID *calloutKey,
OUT ULONG64 *filterId,
OUT HANDLE *engine);
// Callout函数 flowDeleteFn
VOID NTAPI flowDeleteFn(
_In_ UINT16 layerId,
_In_ UINT32 calloutId,
_In_ UINT64 flowContext
);
// Callout函数 classifyFn
#if (NTDDI_VERSION >= NTDDI_WIN8)
VOID NTAPI classifyFn(
_In_ const FWPS_INCOMING_VALUES0* inFixedValues,
_In_ const FWPS_INCOMING_METADATA_VALUES0* inMetaValues,
_Inout_opt_ void* layerData,
_In_opt_ const void* classifyContext,
_In_ const FWPS_FILTER2* filter,
_In_ UINT64 flowContext,
_Inout_ FWPS_CLASSIFY_OUT0* classifyOut
);
#elif (NTDDI_VERSION >= NTDDI_WIN7)
VOID NTAPI classifyFn(
_In_ const FWPS_INCOMING_VALUES0* inFixedValues,
_In_ const FWPS_INCOMING_METADATA_VALUES0* inMetaValues,
_Inout_opt_ void* layerData,
_In_opt_ const void* classifyContext,
_In_ const FWPS_FILTER1* filter,
_In_ UINT64 flowContext,
_Inout_ FWPS_CLASSIFY_OUT0* classifyOut
);
#else
VOID NTAPI classifyFn(
_In_ const FWPS_INCOMING_VALUES0* inFixedValues,
_In_ const FWPS_INCOMING_METADATA_VALUES0* inMetaValues,
_Inout_opt_ void* layerData,
_In_ const FWPS_FILTER0* filter,
_In_ UINT64 flowContext,
_Inout_ FWPS_CLASSIFY_OUT0* classifyOut
);
#endif
// Callout函数 notifyFn
#if (NTDDI_VERSION >= NTDDI_WIN8)
NTSTATUS NTAPI notifyFn(
_In_ FWPS_CALLOUT_NOTIFY_TYPE notifyType,
_In_ const GUID* filterKey,
_Inout_ FWPS_FILTER2* filter
);
#elif (NTDDI_VERSION >= NTDDI_WIN7)
NTSTATUS NTAPI notifyFn(
_In_ FWPS_CALLOUT_NOTIFY_TYPE notifyType,
_In_ const GUID* filterKey,
_Inout_ FWPS_FILTER1* filter
);
#else
NTSTATUS NTAPI notifyFn(
_In_ FWPS_CALLOUT_NOTIFY_TYPE notifyType,
_In_ const GUID* filterKey,
_Inout_ FWPS_FILTER0* filter
);
#endif
// ------------------------------------------------------------------------------
// 函数实现部分
// ------------------------------------------------------------------------------
// 协议判断
NTSTATUS ProtocalIdToName(UINT16 protocalId, PCHAR lpszProtocalName)
{
NTSTATUS status = STATUS_SUCCESS;
switch (protocalId)
{
case 1:
{
// ICMP
RtlCopyMemory(lpszProtocalName, "ICMP", 5);
break;
}
case 2:
{
// IGMP
RtlCopyMemory(lpszProtocalName, "IGMP", 5);
break;
}
case 6:
{
// TCP
RtlCopyMemory(lpszProtocalName, "TCP", 4);
break;
}
case 17:
{
// UDP
RtlCopyMemory(lpszProtocalName, "UDP", 4);
break;
}
case 27:
{
// RDP
RtlCopyMemory(lpszProtocalName, "RDP", 6);
break;
}
default:
{
// UNKNOW
RtlCopyMemory(lpszProtocalName, "UNKNOWN", 8);
break;
}
}
return status;
}
// 启动WFP
NTSTATUS WfpLoad(PDEVICE_OBJECT pDevObj)
{
NTSTATUS status = STATUS_SUCCESS;
// 注册Callout并设置过滤点
// classifyFn, notifyFn, flowDeleteFn 注册三个回调函数,一个事前回调,两个事后回调
status = RegisterCalloutForLayer(pDevObj, &FWPM_LAYER_ALE_AUTH_CONNECT_V4, &GUID_ALE_AUTH_CONNECT_CALLOUT_V4,
classifyFn, notifyFn, flowDeleteFn, &g_AleConnectCalloutId, &g_AleConnectFilterId, &g_hEngine);
if (!NT_SUCCESS(status))
{
DbgPrint("注册回调失败 \n");
return status;
}
return status;
}
// 卸载WFP
NTSTATUS WfpUnload()
{
if (NULL != g_hEngine)
{
// 删除FilterId
FwpmFilterDeleteById(g_hEngine, g_AleConnectFilterId);
// 删除CalloutId
FwpmCalloutDeleteById(g_hEngine, g_AleConnectCalloutId);
// 清空Filter
g_AleConnectFilterId = 0;
// 反注册CalloutId
FwpsCalloutUnregisterById(g_AleConnectCalloutId);
// 清空CalloutId
g_AleConnectCalloutId = 0;
// 关闭引擎
FwpmEngineClose(g_hEngine);
g_hEngine = NULL;
}
return STATUS_SUCCESS;
}
// 注册Callout并设置过滤点
NTSTATUS RegisterCalloutForLayer(IN PDEVICE_OBJECT pDevObj, IN const GUID *layerKey, IN const GUID *calloutKey, IN FWPS_CALLOUT_CLASSIFY_FN classifyFn, IN FWPS_CALLOUT_NOTIFY_FN notifyFn, IN FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN flowDeleteNotifyFn, OUT ULONG32 *calloutId, OUT ULONG64 *filterId, OUT HANDLE *engine)
{
NTSTATUS status = STATUS_SUCCESS;
// 注册Callout
status = RegisterCallout(pDevObj, calloutKey, classifyFn, notifyFn, flowDeleteNotifyFn, calloutId);
if (!NT_SUCCESS(status))
{
return status;
}
// 设置过滤点
status = SetFilter(layerKey, calloutKey, filterId, engine);
if (!NT_SUCCESS(status))
{
return status;
}
return status;
}
// 注册Callout
NTSTATUS RegisterCallout(PDEVICE_OBJECT pDevObj, IN const GUID *calloutKey, IN FWPS_CALLOUT_CLASSIFY_FN classifyFn, IN FWPS_CALLOUT_NOTIFY_FN notifyFn, IN FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN flowDeleteNotifyFn, OUT ULONG32 *calloutId)
{
NTSTATUS status = STATUS_SUCCESS;
FWPS_CALLOUT sCallout = { 0 };
// 设置Callout
sCallout.calloutKey = *calloutKey;
sCallout.classifyFn = classifyFn;
sCallout.flowDeleteFn = flowDeleteNotifyFn;
sCallout.notifyFn = notifyFn;
// 注册Callout
status = FwpsCalloutRegister(pDevObj, &sCallout, calloutId);
if (!NT_SUCCESS(status))
{
DbgPrint("注册Callout失败 \n");
return status;
}
return status;
}
// 设置过滤点
NTSTATUS SetFilter(IN const GUID *layerKey, IN const GUID *calloutKey, OUT ULONG64 *filterId, OUT HANDLE *engine)
{
HANDLE hEngine = NULL;
NTSTATUS status = STATUS_SUCCESS;
FWPM_SESSION session = { 0 };
FWPM_FILTER mFilter = { 0 };
FWPM_CALLOUT mCallout = { 0 };
FWPM_DISPLAY_DATA mDispData = { 0 };
// 创建Session
session.flags = FWPM_SESSION_FLAG_DYNAMIC;
status = FwpmEngineOpen(NULL, RPC_C_AUTHN_WINNT, NULL, &session, &hEngine);
if (!NT_SUCCESS(status))
{
return status;
}
// 开始事务
status = FwpmTransactionBegin(hEngine, 0);
if (!NT_SUCCESS(status))
{
return status;
}
// 设置Callout参数
mDispData.name = L"MY WFP LyShark";
mDispData.description = L"WORLD OF DEMON";
mCallout.applicableLayer = *layerKey;
mCallout.calloutKey = *calloutKey;
mCallout.displayData = mDispData;
// 添加Callout到Session中
status = FwpmCalloutAdd(hEngine, &mCallout, NULL, NULL);
if (!NT_SUCCESS(status))
{
return status;
}
// 设置过滤器参数
mFilter.action.calloutKey = *calloutKey;
mFilter.action.type = FWP_ACTION_CALLOUT_TERMINATING;
mFilter.displayData.name = L"MY WFP LyShark";
mFilter.displayData.description = L"WORLD OF DEMON";
mFilter.layerKey = *layerKey;
mFilter.subLayerKey = FWPM_SUBLAYER_UNIVERSAL;
mFilter.weight.type = FWP_EMPTY;
// 添加过滤器
status = FwpmFilterAdd(hEngine, &mFilter, NULL, filterId);
if (!NT_SUCCESS(status))
{
return status;
}
// 提交事务
status = FwpmTransactionCommit(hEngine);
if (!NT_SUCCESS(status))
{
return status;
}
*engine = hEngine;
return status;
}
// Callout函数 classifyFn 事前回调函数
VOID NTAPI classifyFn(_In_ const FWPS_INCOMING_VALUES0* inFixedValues, _In_ const FWPS_INCOMING_METADATA_VALUES0* inMetaValues, _Inout_opt_ void* layerData, _In_opt_ const void* classifyContext, _In_ const FWPS_FILTER2* filter, _In_ UINT64 flowContext, _Inout_ FWPS_CLASSIFY_OUT0* classifyOut)
{
// 数据包的方向,取值 FWP_DIRECTION_INBOUND = 1 或 FWP_DIRECTION_OUTBOUND = 0
WORD wDirection = inFixedValues->incomingValue[FWPS_FIELD_ALE_FLOW_ESTABLISHED_V4_DIRECTION].value.int8;
// 定义本机地址与本机端口
ULONG ulLocalIp = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_ADDRESS].value.uint32;
UINT16 uLocalPort = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_PORT].value.uint16;
// 定义对端地址与对端端口
ULONG ulRemoteIp = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_REMOTE_ADDRESS].value.uint32;
UINT16 uRemotePort = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_REMOTE_PORT].value.uint16;
// 获取当前进程IRQ
KIRQL kCurrentIrql = KeGetCurrentIrql();
// 获取进程ID
ULONG64 processId = inMetaValues->processId;
UCHAR szProcessPath[256] = { 0 };
CHAR szProtocalName[256] = { 0 };
RtlZeroMemory(szProcessPath, 256);
// 获取进程路径
for (ULONG i = 0; i < inMetaValues->processPath->size; i++)
{
// 里面是宽字符存储的
szProcessPath[i] = inMetaValues->processPath->data[i];
}
// 获取当前协议类型
ProtocalIdToName(inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_PROTOCOL].value.uint16, szProtocalName);
// 设置默认规则 允许连接
classifyOut->actionType = FWP_ACTION_PERMIT;
// 禁止指定进程网络连接
if (NULL != wcsstr((PWCHAR)szProcessPath, L"iexplore.exe"))
{
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
DbgPrint("[LyShark.com] 拦截IE网络链接请求... \n");
}
// 输出对端地址字符串 并阻断链接
char szRemoteAddress[256] = { 0 };
char szRemotePort[128] = { 0 };
char szLocalAddress[256] = { 0 };
char szLocalPort[128] = { 0 };
sprintf(szRemoteAddress, "%u.%u.%u.%u", (ulRemoteIp >> 24) & 0xFF, (ulRemoteIp >> 16) & 0xFF, (ulRemoteIp >> 8) & 0xFF, (ulRemoteIp)& 0xFF);
sprintf(szRemotePort, "%d", uRemotePort);
sprintf(szLocalAddress, "%u.%u.%u.%u", (ulLocalIp >> 24) & 0xFF, (ulLocalIp >> 16) & 0xFF, (ulLocalIp >> 8) & 0xFF, (ulLocalIp)& 0xFF);
sprintf(szLocalPort, "%d", uLocalPort);
// DbgPrint("本端: %s : %s --> 对端: %s : %s \n", szLocalAddress, szLocalPort, szRemoteAddress, szRemotePort);
// 如果对端地址是 8.141.58.64 且对端端口是 443 则拒绝连接
if (strcmp(szRemoteAddress, "8.141.58.64") == 0 && strcmp(szRemotePort, "443") == 0)
{
DbgPrint("[LyShark.com] 拦截网站访问请求 --> %s : %s \n", szRemoteAddress, szRemotePort);
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
}
else if (strcmp(szRemotePort, "0") == 0)
{
DbgPrint("[LyShark.com] 拦截Ping访问请求 --> %s \n", szRemoteAddress);
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
}
// 显示
DbgPrint("[LyShark.com] 方向: %d -> 协议类型: %s -> 本端地址: %u.%u.%u.%u:%d -> 对端地址: %u.%u.%u.%u:%d -> IRQL: %d -> 进程ID: %I64d -> 路径: %S \n",
wDirection,
szProtocalName,
(ulLocalIp >> 24) & 0xFF,
(ulLocalIp >> 16) & 0xFF,
(ulLocalIp >> 8) & 0xFF,
(ulLocalIp)& 0xFF,
uLocalPort,
(ulRemoteIp >> 24) & 0xFF,
(ulRemoteIp >> 16) & 0xFF,
(ulRemoteIp >> 8) & 0xFF,
(ulRemoteIp)& 0xFF,
uRemotePort,
kCurrentIrql,
processId,
(PWCHAR)szProcessPath);
}
// Callout函数 notifyFn 事后回调函数
NTSTATUS NTAPI notifyFn(_In_ FWPS_CALLOUT_NOTIFY_TYPE notifyType, _In_ const GUID* filterKey, _Inout_ FWPS_FILTER2* filter)
{
NTSTATUS status = STATUS_SUCCESS;
return status;
}
// Callout函数 flowDeleteFn 事后回调函数
VOID NTAPI flowDeleteFn(_In_ UINT16 layerId, _In_ UINT32 calloutId, _In_ UINT64 flowContext)
{
return;
}
// 默认派遣函数
NTSTATUS DriverDefaultHandle(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
NTSTATUS status = STATUS_SUCCESS;
pIrp->IoStatus.Status = status;
pIrp->IoStatus.Information = 0;
IoCompleteRequest(pIrp, IO_NO_INCREMENT);
return status;
}
// 创建设备
NTSTATUS CreateDevice(PDRIVER_OBJECT pDriverObject)
{
NTSTATUS status = STATUS_SUCCESS;
PDEVICE_OBJECT pDevObj = NULL;
UNICODE_STRING ustrDevName, ustrSymName;
RtlInitUnicodeString(&ustrDevName, DEV_NAME);
RtlInitUnicodeString(&ustrSymName, SYM_NAME);
status = IoCreateDevice(pDriverObject, 0, &ustrDevName, FILE_DEVICE_NETWORK, 0, FALSE, &pDevObj);
if (!NT_SUCCESS(status))
{
return status;
}
status = IoCreateSymbolicLink(&ustrSymName, &ustrDevName);
if (!NT_SUCCESS(status))
{
return status;
}
return status;
}
// 卸载驱动
VOID UnDriver(PDRIVER_OBJECT driver)
{
// 删除回调函数和过滤器,关闭引擎
WfpUnload();
UNICODE_STRING ustrSymName;
RtlInitUnicodeString(&ustrSymName, SYM_NAME);
IoDeleteSymbolicLink(&ustrSymName);
if (driver->DeviceObject)
{
IoDeleteDevice(driver->DeviceObject);
}
}
// 驱动入口
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
NTSTATUS status = STATUS_SUCCESS;
Driver->DriverUnload = UnDriver;
for (ULONG i = 0; i < IRP_MJ_MAXIMUM_FUNCTION; i++)
{
Driver->MajorFunction[i] = DriverDefaultHandle;
}
// 创建设备
CreateDevice(Driver);
// 启动WFP
WfpLoad(Driver->DeviceObject);
Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;
}
上方代码是一个最基本的WFP过滤框架头部函数,声明部分来源于微软的定义此处不做解释,需要注意GUID_ALE_AUTH_CONNECT_CALLOUT_V4
代表的是一个随机UUID
值,该值可以任意定义只要不一致即可,驱动程序运行后会率先执行WfpLoad()
这个函数,该函数内部通过RegisterCalloutForLayer()
注册了一个过滤点,此处我们必须要注意三个回调函数,classifyFn, notifyFn, flowDeleteFn 他们分别的功能时,事前回调,事后回调,事后回调,而WFP框架中我们最需要注意的也就是对这三个函数进行重定义,也就是需要重写函数来实现我们特定的功能。
NTSTATUS RegisterCalloutForLayer
(
IN const GUID* layerKey,
IN const GUID* calloutKey,
IN FWPS_CALLOUT_CLASSIFY_FN classifyFn,
IN FWPS_CALLOUT_NOTIFY_FN notifyFn,
IN FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN flowDeleteNotifyFn,
OUT UINT32* calloutId,
OUT UINT64* filterId
}
既然是防火墙那么必然classifyFn
事前更重要一些,如果需要监控网络流量则需要在事前函数中做处理,而如果是监视则可以在事后做处理,既然要在事前进行处理,那么我们就来看看事前是如何处理的流量。
// Callout函数 classifyFn 事前回调函数
VOID NTAPI classifyFn(_In_ const FWPS_INCOMING_VALUES0* inFixedValues, _In_ const FWPS_INCOMING_METADATA_VALUES0* inMetaValues, _Inout_opt_ void* layerData, _In_opt_ const void* classifyContext, _In_ const FWPS_FILTER2* filter, _In_ UINT64 flowContext, _Inout_ FWPS_CLASSIFY_OUT0* classifyOut)
{
// 数据包的方向,取值 FWP_DIRECTION_INBOUND = 1 或 FWP_DIRECTION_OUTBOUND = 0
WORD wDirection = inFixedValues->incomingValue[FWPS_FIELD_ALE_FLOW_ESTABLISHED_V4_DIRECTION].value.int8;
// 定义本机地址与本机端口
ULONG ulLocalIp = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_ADDRESS].value.uint32;
UINT16 uLocalPort = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_PORT].value.uint16;
// 定义对端地址与对端端口
ULONG ulRemoteIp = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_REMOTE_ADDRESS].value.uint32;
UINT16 uRemotePort = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_REMOTE_PORT].value.uint16;
// 获取当前进程IRQ
KIRQL kCurrentIrql = KeGetCurrentIrql();
// 获取进程ID
ULONG64 processId = inMetaValues->processId;
UCHAR szProcessPath[256] = { 0 };
CHAR szProtocalName[256] = { 0 };
RtlZeroMemory(szProcessPath, 256);
// 获取进程路径
for (ULONG i = 0; i < inMetaValues->processPath->size; i++)
{
// 里面是宽字符存储的
szProcessPath[i] = inMetaValues->processPath->data[i];
}
// 获取当前协议类型
ProtocalIdToName(inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_PROTOCOL].value.uint16, szProtocalName);
// 设置默认规则 允许连接
classifyOut->actionType = FWP_ACTION_PERMIT;
// 禁止指定进程网络连接
if (NULL != wcsstr((PWCHAR)szProcessPath, L"qq.exe"))
{
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
}
// 输出对端地址字符串 并阻断链接
char szRemoteAddress[256] = { 0 };
char szRemotePort[128] = { 0 };
char szLocalAddress[256] = { 0 };
char szLocalPort[128] = { 0 };
sprintf(szRemoteAddress, "%u.%u.%u.%u", (ulRemoteIp >> 24) & 0xFF, (ulRemoteIp >> 16) & 0xFF, (ulRemoteIp >> 8) & 0xFF, (ulRemoteIp)& 0xFF);
sprintf(szRemotePort, "%d", uRemotePort);
sprintf(szLocalAddress, "%u.%u.%u.%u", (ulLocalIp >> 24) & 0xFF, (ulLocalIp >> 16) & 0xFF, (ulLocalIp >> 8) & 0xFF, (ulLocalIp)& 0xFF);
sprintf(szLocalPort, "%d", uLocalPort);
// DbgPrint("本端: %s : %s --> 对端: %s : %s \n", szLocalAddress, szLocalPort, szRemoteAddress, szRemotePort);
// 如果对端地址是 8.141.58.64 且对端端口是 443 则拒绝连接
if (strcmp(szRemoteAddress, "8.141.58.64") == 0 && strcmp(szRemotePort, "443") == 0)
{
DbgPrint("拦截网站访问请求 --> %s : %s \n", szRemoteAddress, szRemotePort);
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
}
else if (strcmp(szRemotePort, "0") == 0)
{
DbgPrint("拦截Ping访问请求 --> %s \n", szRemoteAddress);
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
}
/*
// 显示
DbgPrint("方向: %d -> 协议类型: %s -> 本端地址: %u.%u.%u.%u:%d -> 对端地址: %u.%u.%u.%u:%d -> IRQL: %d -> 进程ID: %I64d -> 路径: %S \n",
wDirection,
szProtocalName,
(ulLocalIp >> 24) & 0xFF,
(ulLocalIp >> 16) & 0xFF,
(ulLocalIp >> 8) & 0xFF,
(ulLocalIp)& 0xFF,
uLocalPort,
(ulRemoteIp >> 24) & 0xFF,
(ulRemoteIp >> 16) & 0xFF,
(ulRemoteIp >> 8) & 0xFF,
(ulRemoteIp)& 0xFF,
uRemotePort,
kCurrentIrql,
processId,
(PWCHAR)szProcessPath);
*/
}
当有新的网络数据包路由到事前函数时,程序中会通过如下案例直接得到我们所需要的数据包头,ProtocalIdToName
函数则是一个将特定类型数字转为字符串的转换函数。
// 数据包的方向,取值 FWP_DIRECTION_INBOUND = 1 或 FWP_DIRECTION_OUTBOUND = 0
WORD wDirection = inFixedValues->incomingValue[FWPS_FIELD_ALE_FLOW_ESTABLISHED_V4_DIRECTION].value.int8;
// 定义本机地址与本机端口
ULONG ulLocalIp = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_ADDRESS].value.uint32;
UINT16 uLocalPort = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_LOCAL_PORT].value.uint16;
// 定义对端地址与对端端口
ULONG ulRemoteIp = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_REMOTE_ADDRESS].value.uint32;
UINT16 uRemotePort = inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_REMOTE_PORT].value.uint16;
// 获取当前进程IRQ
KIRQL kCurrentIrql = KeGetCurrentIrql();
// 获取进程ID
ULONG64 processId = inMetaValues->processId;
UCHAR szProcessPath[256] = { 0 };
CHAR szProtocalName[256] = { 0 };
RtlZeroMemory(szProcessPath, 256);
// 获取进程路径
for (ULONG i = 0; i < inMetaValues->processPath->size; i++)
{
// 里面是宽字符存储的
szProcessPath[i] = inMetaValues->processPath->data[i];
}
// 获取当前协议类型
ProtocalIdToName(inFixedValues->incomingValue[FWPS_FIELD_ALE_AUTH_CONNECT_V4_IP_PROTOCOL].value.uint16, szProtocalName);
拦截浏览器上网: 防火墙的默认规则我们将其改为放行所有classifyOut->actionType = FWP_ACTION_PERMIT;
,当我们需要拦截特定进程上网时则只需要判断调用原,如果时特定进程则直接设置拒绝网络访问。
// 设置默认规则 允许连接
classifyOut->actionType = FWP_ACTION_PERMIT;
// 禁止指定进程网络连接
if (NULL != wcsstr((PWCHAR)szProcessPath, L"iexplore.exe"))
{
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
DbgPrint("[LyShark.com] 拦截IE网络链接请求... \n");
}
当这段驱动程序被加载后,则用户使用IE访问任何页面都将提示无法访问。
拦截指定IP地址: 防火墙的另一个重要功能就是拦截主机自身访问特定网段,此功能只需要增加过滤条件即可实现,如下当用户访问8.141.58.64
这个IP地址是则会被拦截,如果监测到用户时Ping请求则也会被拦截。
// 如果对端地址是 8.141.58.64 且对端端口是 443 则拒绝连接
if (strcmp(szRemoteAddress, "8.141.58.64") == 0 && strcmp(szRemotePort, "443") == 0)
{
DbgPrint("拦截网站访问请求 --> %s : %s \n", szRemoteAddress, szRemotePort);
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
}
else if (strcmp(szRemotePort, "0") == 0)
{
DbgPrint("拦截Ping访问请求 --> %s \n", szRemoteAddress);
// 设置拒绝规则 拒绝连接
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights = classifyOut->rights & (~FWPS_RIGHT_ACTION_WRITE);
classifyOut->flags = classifyOut->flags | FWPS_CLASSIFY_OUT_FLAG_ABSORB;
}
当这段驱动程序被加载后,则用户主机无法访问8.141.58.64
且无法使用ping命令。
抓取底层数据包: 如果仅仅只是想要输出流经自身主机的数据包,则只需要对特定数据包进行解码即可得到原始数据。
// 输出对端地址字符串 并阻断链接
char szRemoteAddress[256] = { 0 };
char szRemotePort[128] = { 0 };
char szLocalAddress[256] = { 0 };
char szLocalPort[128] = { 0 };
sprintf(szRemoteAddress, "%u.%u.%u.%u", (ulRemoteIp >> 24) & 0xFF, (ulRemoteIp >> 16) & 0xFF, (ulRemoteIp >> 8) & 0xFF, (ulRemoteIp)& 0xFF);
sprintf(szRemotePort, "%d", uRemotePort);
sprintf(szLocalAddress, "%u.%u.%u.%u", (ulLocalIp >> 24) & 0xFF, (ulLocalIp >> 16) & 0xFF, (ulLocalIp >> 8) & 0xFF, (ulLocalIp)& 0xFF);
sprintf(szLocalPort, "%d", uLocalPort);
// 显示
DbgPrint("[LyShark.com] 方向: %d -> 协议类型: %s -> 本端地址: %u.%u.%u.%u:%d -> 对端地址: %u.%u.%u.%u:%d -> IRQL: %d -> 进程ID: %I64d -> 路径: %S \n",
wDirection,
szProtocalName,
(ulLocalIp >> 24) & 0xFF,
(ulLocalIp >> 16) & 0xFF,
(ulLocalIp >> 8) & 0xFF,
(ulLocalIp)& 0xFF,
uLocalPort,
(ulRemoteIp >> 24) & 0xFF,
(ulRemoteIp >> 16) & 0xFF,
(ulRemoteIp >> 8) & 0xFF,
(ulRemoteIp)& 0xFF,
uRemotePort,
kCurrentIrql,
processId,
(PWCHAR)szProcessPath);
当这段驱动程序被加载后,则用户可看到流经本机的所有数据包。