题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458
题意:给出一张N个点,M条边的无向图,有两个操作:
1.删除(u, v)间的一条边
2.如果删除(u, v)间的一条边可使其不连通,找出这样的边的个数,就是找(u, v)间桥的个数
思路:首先离线这些操作,时光倒流从最终状态逆着加边加回原图,可以考虑用并查集建树,然后以树作为最终状态,再树链剖分预处理下,建一颗线段树维护区间和(叶子值为1代表当前边为桥),如果有边(u, v)要加入,那就将(u, v)这段区间的所对应的线段树叶子值全清零,并设置标记数组,因为已更新过的点不用再访问
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <utility>
#include <cmath>
#include <queue>
#include <set>
#include <map>
#include <climits>
#include <functional>
#include <deque>
#include <ctime>
#include <string>
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef long long ll;
const int maxn = 101000;
const int inf = 0x3f3f3f3f;
struct Edge
{
int from, to, next;
} edge[maxn << 1];
int head[maxn], tot, val[maxn];
int top[maxn], fa[maxn], deep[maxn];
int num[maxn], p[maxn], fp[maxn];
int son[maxn], pos, mp[maxn];
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
pos = 1;
memset(son, -1, sizeof(son));
}
void addedge(int u, int v)
{
edge[tot].from = u;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs1(int u, int pre, int d)
{
deep[u] = d;
fa[u] = pre;
num[u] = 1;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v != pre)
{
dfs1(v, u, d + 1);
num[u] += num[v];
if (son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
}
void getpos(int u, int sp)
{
top[u] = sp;
mp[u] = p[u] = pos++;
fp[p[u]] = u;
if (son[u] == -1) return;
getpos(son[u], sp);
mp[u] = max(mp[u], mp[son[u]]);
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v != son[u] && v != fa[u])
getpos(v, v);
mp[u] = max(mp[u], mp[v]);
}
}
struct UF
{
int fa[maxn];
void init(int n)
{
for (int i = 0; i <= n; i++)
fa[i] = i;
}
int Find(int x)
{
if (fa[x] == x) return x;
return fa[x] = Find(fa[x]);
}
} uf;
map <int, int> ma[maxn];
map <int, int> ::iterator it;
int tr[maxn << 2], lazy[maxn << 2];
void pushup(int rt)
{
tr[rt] = tr[rt << 1] + tr[rt << 1 | 1];
}
void build(int l, int r, int rt)
{
lazy[rt] = 0;
if (l == r)
{
tr[rt] = 1;
return ;
}
int mid = (l + r) >> 1;
build(lson);
build(rson);
pushup(rt);
}
void update(int ql, int qr, int l, int r, int rt)
{
if (lazy[rt]) return ;
if (ql <= l && qr >= r)
{
tr[rt] = 0;
lazy[rt] = 1;
return ;
}
int mid = (l + r) >> 1;
if (ql <= mid)
update(ql, qr, lson);
if (qr > mid)
update(ql, qr, rson);
pushup(rt);
}
int query(int ql, int qr, int l, int r, int rt)
{
if (lazy[rt]) return 0;
if (ql <= l && qr >= r)
return tr[rt];
int res = 0;
int mid = (l + r) >> 1;
if (ql <= mid)
res += query(ql, qr, lson);
if (qr > mid)
res += query(ql, qr, rson);
return res;
}
void change(int u, int v)
{
int fu = top[u], fv = top[v];
while (fu != fv)
{
if (deep[fu] < deep[fv])
{
swap(fu, fv);
swap(u, v);
}
update(p[fu], p[u], 1, pos, 1);
u = fa[fu], fu = top[u];
}
if (deep[u] > deep[v]) swap(u, v);
if (u != v)
update(p[son[u]], p[v], 1, pos, 1);
}
int answer(int u, int v)
{
int res = 0;
int fu = top[u], fv = top[v];
while (fu != fv)
{
if (deep[fu] < deep[fv])
{
swap(fu, fv);
swap(u, v);
}
res += query(p[fu], p[u], 1, pos, 1);
u = fa[fu], fu = top[u];
}
if (deep[u] > deep[v]) swap(u, v);
if (u != v)
res += query(p[son[u]], p[v], 1, pos, 1);
return res;
}
struct node
{
int op, u, v, ans;
} que[maxn];
int main()
{
int t;
cin >> t;
for (int ca = 1; ca <= t; ca++)
{
printf("Case #%d:\n", ca);
init();
int n, m, q;
cin >> n >> m >> q;
for (int i = 0; i <= n; i++) ma[i].clear();
uf.init(n);
for (int i = 0; i < m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
if (u > v) swap(u, v);
ma[u][v]++;
}
for (int i = 1; i <= q; i++)
{
scanf("%d%d%d", &que[i].op, &que[i].u, &que[i].v);
if (que[i].u > que[i].v) swap(que[i].u, que[i].v);
if (que[i].op == 1)
ma[que[i].u][que[i].v]--;
}
for (int i = 1; i <= n; i++)
{
for (it = ma[i].begin(); it != ma[i].end(); it++)
{
if (it->second > 0)
{
int u = i, v = it->first;
int fu = uf.Find(u), fv = uf.Find(v);
if (fu != fv)
{
addedge(u, v);
addedge(v, u);
uf.fa[fu] = fv;
(it->second)--;
}
}
}
}
dfs1(1, 0, 0);
getpos(1, 1);
build(1, pos, 1);
// for (int i = 0; i < tot; i += 2)
// printf("%d %d\n", edge[i].from, edge[i].to);
// for (int i = 1; i <= n; i++)
// printf("%d\n", p[i]);
for (int i = 1; i <= n; i++)
{
for (it = ma[i].begin(); it != ma[i].end(); it++)
{
if (it->second > 0)
{
int u = i, v = it->first;
change(u, v);
}
}
}
for (int i = q; i >= 1; i--)
{
if (que[i].op == 1)
change(que[i].u, que[i].v);
else
que[i].ans = answer(que[i].u, que[i].v);
}
for (int i = 1; i <= q; i++)
if (que[i].op == 2)
printf("%d\n", que[i].ans);
}
return 0;
}