import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.autograd import Variable
import matplotlib.pyplot as plt
import torchvision.datasets as dsets
# 超参数
EPOCH = 1 # 为了节省时间,只训练一趟
BATCH_SIZE = 64
TIME_STEP = 28
INPUT_SIZE = 28
LR = 0.01
DOWNLOAD_MNIST = True
# MNIST数字数据集
train_data = dsets.MNIST(
root='./mnist/',
train=True,
transform=transforms.ToTensor(),
download=DOWNLOAD_MNIST,
)
# 打印出其中一个例子
print(train_data.train_data.size()) # (60000, 28, 28)
print(train_data.train_labels.size()) # (60000)
plt.imshow(train_data.train_data[1], cmap='gray')
plt.title('%i' % train_data.train_labels[1])
plt.show()
# 数据加载机
train_loader = torch.utils.data.DataLoader(
dataset=train_data,
batch_size=BATCH_SIZE,
shuffle=True,
)
# 把test_data转化成Variable, 拿出前2000个作为检测
test_data = dsets.MNIST(
root='./mnist/',
train=False,
transform=transforms.ToTensor(),
)
test_x = Variable(test_data.test_data, volatile=True).type(torch.FloatTensor)[:2000]/255
test_y = test_data.test_labels.numpy().squeeze()[:2000]
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM( # 如果使用nn.RNN(),它几乎无法学习
input_size=INPUT_SIZE,
hidden_size=64, # rnn隐藏单位
num_layers=1, # rnn层的数量
batch_first=True, # input&output的批量大小是1维度。 例如 (batch,time_step,input_size)
)
self.out = nn.Linear(64, 10)
def forward(self, x):
# x shape (batch, time_step, input_size)
# r_out shape (batch, time_step, output_size)
# h_n shape (n_layers, batch, hidden_size)
# h_c shape (n_layers, batch, hidden_size)
r_out, (h_n, h_c) = self.rnn(x, None) # None表示零初始隐藏状态
# choose r_out at the last time step
out = self.out(r_out[:, -1, :])
return out
rnn = RNN()
print(rnn)
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
loss_func = nn.CrossEntropyLoss()
# 训练并测试神经网络
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train_loader): # gives batch data
b_x = Variable(x.view(-1, 28, 28)) # reshape x to (batch, time_step, input_size)
b_y = Variable(y) # batch y
output = rnn(b_x) # rnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if step % 50 == 0:
test_output = rnn(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
accuracy = sum(pred_y == test_y) / float(test_y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
# 打印前10个测试值
test_output = rnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')
运行结果: