网络搜索
介绍
网格搜索(Grid Search)是一种超参数优化方法,用于选择最佳的模型超参数组合。在机器学习中,超参数是在训练模型之前设置的参数,无法通过模型学习得到。网格搜索通过尝试所有可能的超参数组合,并使用交叉验证来评估每个组合的性能,从而确定最佳的超参数组合。
步骤
网格搜索的步骤如下:
- 定义要调整的超参数范围:确定要调整的每个超参数的可能取值范围。例如,学习率、正则化参数等。
- 创建参数网格:将每个超参数的可能取值组合成一个参数网格。
- 定义评估指标:选择一个评估指标来衡量每个超参数组合的性能。例如,准确率、均方误差等。
- 构建模型和交叉验证:选择一个机器学习模型,并定义交叉验证策略,将数据集分成训练集和验证集。
- 执行网格搜索:对于每个超参数组合,在交叉验证的每个训练集上训练模型,并在验证集上评估模型性能。
- 选择最佳超参数组合:根据评估指标的结果,选择具有最佳性能的超参数组合。
- 用最佳超参数训练模型:使用最佳超参数组合在整个训练数据集上重新训练模型。
网格搜索的优点是能够系统地尝试不同的超参数组合,找到最佳的模型性能。然而,由于需要尝试所有可能的组合,网格搜索的计算成本较高,尤其是超参数的数量较多时。因此,对于大型数据集和复杂模型,网格搜索可能会变得非常耗时。
为了减少计算成本,可以使用随机搜索(Randomized Search)等其他超参数优化方法,或者使用启发式方法来选择最佳超参数组合。
参数
GridSearchCV的参数包括:
- estimator:要使用的模型或者估计器对象。
- param_grid:一个字典或者列表,包含要进行网格搜索的参数和对应的取值范围。
- scoring:评估模型性能的指标,可以是字符串(使用模型的内置评估指标)或者可调用对象(自定义评估指标)。
- cv:交叉验证的折数或者交叉验证迭代器。
- n_jobs:并行运行的作业数量。-1表示使用所有可用的处理器。
- verbose:控制详细程度的整数值。0表示不输出任何信息,大于1表示输出详细的信息。
- refit:如果为True(默认值),则在找到最佳参数后,使用最佳参数重新拟合整个数据集。
- return_train_score:如果为True,则同时返回训练集上的得分。
- error_score:当模型在某些参数组合下发生错误时,用于返回的分数。可以设置为’raise’(抛出错误)或者数字(返回指定的分数)。
- verbose:控制详细程度的整数值。0表示不输出任何信息,大于1表示输出详细的信息。
注意:
在GridSearchCV中,scoring参数可以选择以下评分指标:
回归问题:
- ‘explained_variance’:可解释方差
- ‘neg_mean_absolute_error’:负平均绝对误差
- ‘neg_mean_squared_error’:负均方误差
- ‘neg_mean_squared_log_error’:负对数均方误差
- ‘neg_median_absolute_error’:负中位数绝对误差
- ‘r2’:R^2决定系数
二分类问题:
- ‘accuracy’:准确率
- ‘balanced_accuracy’:平衡准确率
- ‘average_precision’:平均精确率
- ‘f1’:F1得分
- ‘precision’:精确率
- ‘recall’:召回率
- ‘roc_auc’:ROC曲线下的面积
多分类问题: - ‘accuracy’:准确率
- ‘balanced_accuracy’:平衡准确率
- ‘average_precision’:平均精确率
- ‘f1_micro’:微观平均F1得分
- ‘f1_macro’:宏观平均F1得分
- ‘precision_micro’:微观平均精确率
- ‘precision_macro’:宏观平均精确率
- ‘recall_micro’:微观平均召回率
- ‘recall_macro’:宏观平均召回率
- ‘roc_auc_ovr’:基于一对多的ROC曲线下的面积
请注意,不同问题类型和评估指标之间的兼容性可能会有所不同。
5折交叉验证就是把数据集分成5份,然后进行5此测试,如model1就是将第一折fold1的数据作为测试集,其余的四份作为数据集。最后每个model都计算出来一个准确度accuracy,求平均后作为此验证集的精确度。
代码实现
#调用网格搜索和决策树
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, roc_curve, auc
parameters = {'max_depth':[3, 5, 7, 9], 'min_samples_leaf': [1, 2, 3, 4]}# 选择两个超参数 树的深度max_depth和叶子的最小值min_samples_leaf
clf = GridSearchCV(DecisionTreeClassifier(), parameters, cv=3, scoring='accuracy')# 进行网格搜索得到最优参数组合
clf.fit(X_train, y_train) #通过有最优参数组合的最优模型进行训练
print('最优参数:', clf.best_params_)
print('验证集最高得分:', clf.best_score_)
# 获取最优模型
best_model = clf.best_estimator_
print('测试集上准确率:', best_model.score(X_test, y_test))
# 得到预测概率
y_prob_DT = clf.predict_proba(X_test)[:, 1]
# 得到预测标签
y_pred_DT = clf.predict(X_test)
# 得到分类报告
print(classification_report(y_pred = y_pred_DT, y_true = y_test))
# 绘制ROC图
fpr, tpr, threshold = roc_curve(y_score = y_prob_DT, y_true = y_test)
print("AUC值", auc(fpr, tpr))
plt.plot(fpr, tpr,"r-")
plt.plot([0, 1], [0, 1],"b-")
plt.xlable("FPR")
plt.ylable("TPR")
plt.title("ROC Curve")
# 输出结果文件
result = pd.DataFrame()
result["load_ID"] = pd.read_csv("***.csv")["**ID"]
result["predict_labels"] = y_pred_DT
result.to_csv("result.csv", index = False)
# 特征重要性评估
best_DT = clf.best_estimator_
best_DT.fit(X_train, y_train)
# 重要性绘制
plt.figure(figsize(8, 6))
pd.Series(best_DT.feature_importances_, index=X_train.columns).sort_values().plot(kind="barh")