keras学习:实现f1_score(多分类、二分类)
本文链接:https://blog.csdn.net/linxid/article/details/82861957
首先容易谷歌到的两种方法:
1. 构造metrics
这种方法适用于二分类,在模型训练的时候可以作为metrics使用。使用的是固定阈值0.5。
from keras import backend as K
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
model.compile(loss='binary_crossentropy',
optimizer= "adam",
metrics=[f1])
2.callbacks
此做法不推荐,使用的过程中出现bug。
import numpy as np
from keras.callbacks import Callback
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score
class Metrics(Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
self.val_recalls = []
self.val_precisions = []
def on_epoch_end(self, epoch, logs={}):
val_predict = (np.asarray(self.model.predict(self.model.validation_data[0]))).round()
val_targ = self.model.validation_data[1]
_val_f1 = f1_score(val_targ, val_predict)
_val_recall = recall_score(val_targ, val_predict)
_val_precision = precision_score(val_targ, val_predict)
self.val_f1s.append(_val_f1)
self.val_recalls.append(_val_recall)
self.val_precisions.append(_val_precision)
print “ — val_f1: %f — val_precision: %f — val_recall %f” %(_val_f1, _val_precision, _val_recall)
return
metrics = Metrics()
model.fit(training_data, training_target,
validation_data=(validation_data, validation_target),
nb_epoch=10,
batch_size=64,
callbacks=[metrics])
3.最终版:
class Metrics(Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
self.val_recalls = []
self.val_precisions = []
def on_epoch_end(self, epoch, logs={}):
# val_predict = (np.asarray(self.model.predict(self.validation_data[0]))).round()
val_predict = np.argmax(np.asarray(self.model.predict(self.validation_data[0])), axis=1)
# val_targ = self.validation_data[1]
val_targ = np.argmax(self.validation_data[1], axis=1)
_val_f1 = f1_score(val_targ, val_predict, average='macro')
# _val_recall = recall_score(val_targ, val_predict)
# _val_precision = precision_score(val_targ, val_predict)
self.val_f1s.append(_val_f1)
# self.val_recalls.append(_val_recall)
# self.val_precisions.append(_val_precision)
# print('— val_f1: %f — val_precision: %f — val_recall %f' %(_val_f1, _val_precision, _val_recall))
print(' — val_f1:' ,_val_f1)
return
# 其他metrics可自行添加
metrics = Metrics()
class Metrics(Callback):
def on_train_begin(self, logs={}):
self.val_f1s = []
# self.val_recalls = []
# self.val_precisions = []
def on_epoch_end(self, epoch, logs={}):
val_targ = self.validation_data[1]
val_predict = self.model.predict(self.validation_data[0])
best_threshold = 0
best_f1 = 0
for threshold in [i * 0.01 for i in range(25,45)]:
y_pred = y_pred=(y_pred > threshold).astype(int)
# val_recall = recall_score(val_targ, y_pred)
# val_precision = precision_score(val_targ, y_pred)
val_f1 = f1_score(val_targ, val_predict)
if val_f1 > best_f1:
best_threshold = threshold
best_f1 = val_f1
self.val_f1s.append(_val_f1)
# self.val_recalls.append(_val_recall)
# self.val_precisions.append(_val_precision)
print('— val_f1: %f' %(_val_f1))
# print('— val_f1: %f — val_precision: %f — val_recall %f' %(_val_f1, _val_precision, _val_recall))
return