Given a set of N (> 1) positive integers, you are supposed to partition them into two disjoint sets A1 and A2 of n1 and n2 numbers, respectively. Let S1 and S2 denote the sums of all the numbers in A1 and A2, respectively. You are supposed to make the partition so that |n1 - n2| is minimized first, and then |S1 - S2| is maximized.
Input Specification:
Each input file contains one test case. For each case, the first line gives an integer N (2 <= N <= 105), and then N positive integers follow in the next line, separated by spaces. It is guaranteed that all the integers and their sum are less than 231.
Output Specification:
For each case, print in a line two numbers: |n1 - n2| and |S1 - S2|, separated by exactly one space.
Sample Input 1:10 23 8 10 99 46 2333 46 1 666 555Sample Output 1:
0 3611Sample Input 2:
13 110 79 218 69 3721 100 29 135 2 6 13 5188 85Sample Output 2:
1 9359
题目大意:给定n个数字,把这n个数字分成2组,使得这2组的数字个数之差尽可能小的前提下,让2组数字的和之差最大。
很容易想到,2组数字个数之差不是0就是1,(n 是偶数和奇数的情况) 将较大的数放一组,较小的数一组,相减就是答案。
#include<cstdio>
#include<algorithm>
#define N 100001
int n,sum1=0,sum2=0;
int a[N];
using namespace std;
int main(){
scanf("%d",&n);
for(int i=0 ;i<n ;i++){
scanf("%d",&a[i]);
}
sort(a,a+n);
int x = n/2;
for(int i=0 ;i<x ;i++){
sum1+=a[i];
}
for(int i=x ;i<n ;i++){
sum2+=a[i];
}
if(n%2==0)printf("0 ");
else printf("1 ");
printf("%d\n",sum2-sum1);
return 0;
}