目的
使用keras框架进行简单的图像二分类.
数据准备
使用kaggle中的cat VS dog 数据库进行简单的二分类.数据可以在这里下载
下载的数据库会有train和test两个文件夹. 其中train中包含cat文件夹包含12,500张有标记的猫的照片(有标记是指图片名带有cat字段), dog文件夹包含12,500张有标记的狗的图片. test文件夹包含12,500张没有标记的猫狗图片.
test文件夹中的图片没有标记, 因此在训练的过程中没有用, 仅能用来进行测试.
train的文件可以进行训练和验证. 在这里我们将train中的图片以6:4的比例划分为train set和validation set.最终的文件夹结构如下:
--data
-- train
-- cat
-- dog
-- test
-- cat
-- dog
代码
- 导入keras库
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
- 输入设置
# dimensions of our images.
img_width, img_height = ,
train_data_dir = r'../../Data/dog_vs_cat/train'
validation_data_dir = r'../../Data/dog_vs_cat/validation'
nb_train_samples =
nb_validation_samples =
epochs =
batch_size =
- 网络定义
if K.image_data_format() == 'channels_first':
input_shape = (, img_width, img_height)
else:
input_shape = (img_width, img_height, )
model = Sequential()
model.add(Conv2D(, (, ), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(, )))
model.add(Conv2D(, (, )))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(, )))
model.add(Conv2D(, (, )))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(, )))
model.add(Flatten())
model.add(Dense())
model.add(Activation('relu'))
model.add(Dropout())
model.add(Dense())
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
- 查看网络结构
model.summary()
- 网络输入设置
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale= / ,
shear_range=,
zoom_range=,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale= / )
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
shuffle = True,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
- 模型训练
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
# nb_val_samples = 10000,
verbose = ,
validation_steps=nb_validation_samples // batch_size
)
- 保存网络
model.save_weights('first_try.h5')