淘先锋技术网

首页 1 2 3 4 5 6 7

目录

1. Motivation

2. Definition and Procedure

3. What we are going to Learn

 

1. Motivation:

 A. Explosive growth of data:

 Source of abundant data: Business、Science、Society and Everyone.

 B. Turn Data into Values and Knowledge:

 User Opinions:Blog、Social Network、Query logs

 Health Status:Body Temperature、Body Weight、Age、Gender

 System Diagnosis:Network Traffic、Software logs、CPU Usage、Power Consumption

diagnosis [ˌdaɪəɡˈnəʊsɪs] 诊断

consumption  [kənˈsʌmpʃn] 消耗,消费

2. Definition and Procedure:

A. Definition:

Non-trivial Extraction of Implicit,previously unknown and potentially userful imformation from data.

Definition [ˌdefɪˈnɪʃn]  定义
Trival     [ˈtrɪviəl]    琐碎的,不重要的
Non - Trival             无法轻易就能实现,有一定复杂度的
Extraction [ɪkˈstrækʃn]  提取, 抽取
Implicit   [ɪmˈplɪsɪt]   内含的

B. Procedure:

数据源 -> 数据预处理 -> 数据勘探 -> 数据挖掘 -> 数据可视化 -> 决策

intergration     整合

Data Warehouse   数据仓库

3. What we are going to learn:

A. Simple Introdution to Data Exploration:

B. Association to Rule Mining:

C. Clustering:

D. Classification:

E. Anomaly Detection:

F. Link Analysis:

G. Recommendation Systems:

H. Decision Support 

I.  Evaluation of Knowledge

Anomaly     [əˈnɒməli]     异常事物
Link Analysis              链接分析
Evaluation  [ɪˌvæljuˈeɪʃn] 估值,评价