一种习以为常的缓存写法:
IF value in cached THEN return value from cache ELSE compute value save value in cache return value END IF
看上去逻辑无比正确,但实际上会造成2种问题:
1、这种方法是不线程安全的。
2、产生数值写入重复,造成错误的数据。
如下图,在线程1执行计算数值的过程中,线程2也进入数据检查,将多次写入数据,程序非常危险。
演示错误代码:
//最容易产生的错误写法,先读取缓存,读不到就写缓存 public Long getNumber(final long index) { if (cache.containsKey(index)) { return cache.get(index); } final long value = getNumber(index - 1) + getNumber(index - 2); cache.put(index, value); return value; }
1、传统的解决办法,使用重入锁 (getNumberByLock 方法)或者同步锁(getNumberBySynchroniz 方法)。
代码
import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class NaiveCacheExample { private final Map<Long, Long> cache = new HashMap<>(); private Object o=new Object(); Lock lock =new ReentrantLock(); public NaiveCacheExample() { cache.put(0L, 1L); cache.put(1L, 1L); } //最容易产生的错误写法,先读取缓存,读不到就写缓存 public Long getNumber(final long index) { if (cache.containsKey(index)) { return cache.get(index); } final long value = getNumber(index - 1) + getNumber(index - 2); cache.put(index, value); return value; } //使用折返锁,使读写同步 public Long getNumberByLock(final long index) { long value =0; try { lock.lock(); if (cache.containsKey(index)) { return cache.get(index); } value = getNumberByLock(index - 1) + getNumberByLock(index - 2); cache.put(index, value); return value; } catch (Exception e) {} finally { lock.unlock(); } return 0l; } //使用同步,使读写同步 public Long getNumberBySynchroniz(final long index) { synchronized (o) { long value =0; try { if (cache.containsKey(index)) { return cache.get(index); } value = getNumberBySynchroniz(index - 1) + getNumberBySynchroniz(index - 2); cache.put(index, value); return value; } catch (Exception e) {} finally { } } return 0l; } public static void main(final String[] args) { NaiveCacheExample naiveCacheExample =new NaiveCacheExample(); Thread threadA =new Thread(new Runnable() { @Override public void run() { System.out.println(naiveCacheExample.getNumberBySynchroniz(1000)); } } ,"Thread-A"); threadA.start(); final Thread threadB = new Thread(new Runnable() { public void run() { System.out.println(naiveCacheExample.getNumberBySynchroniz(1000)); } }, "Thread-B"); threadB.start(); } }
2、一个更好的缓存算法可以用 Callable
和 Future
。 缓存的值将存储在一个实例 ConcurrentMap 中 ,ConcurrentMap 是线程安全的。
代码:
import java.util.concurrent.Callable; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.ExecutionException; import java.util.concurrent.Future; import java.util.concurrent.FutureTask; public class GenericCacheExample<K, V> { private final ConcurrentMap<K, Future<V>> cache = new ConcurrentHashMap<>(); private Future<V> createFutureIfAbsent(final K key, final Callable<V> callable) { Future<V> future = cache.get(key); if (future == null) { final FutureTask<V> futureTask = new FutureTask<V>(callable); future = cache.putIfAbsent(key, futureTask); if (future == null) { future = futureTask; futureTask.run(); } } return future; } public V getValue(final K key, final Callable<V> callable) throws InterruptedException, ExecutionException { try { final Future<V> future = createFutureIfAbsent(key, callable); return future.get(); } catch (final InterruptedException e) { cache.remove(key); throw e; } catch (final ExecutionException e) { cache.remove(key); throw e; } catch (final RuntimeException e) { cache.remove(key); throw e; } } public void setValueIfAbsent(final K key, final V value) { createFutureIfAbsent(key, new Callable<V>() { @Override public V call() throws Exception { return value; } }); } }
参考博客:
http://www.javacreed.com/how-to-cache-results-to-boost-performance/