1 前言
- 对抗样本库,即进行对抗样本攻击或防御的工具。cleverhans,foolbox,advertorch这三个对抗样本库是比较常用的。github搜索关键字即可找到。
- cleverhans在github有5k个star,foolbox 2k个star,advertorch 1k个star。通过该信息自然大家都会选择使用cleverfans。
- cleverhans在之前的版本中只支持tensorflow。如果习惯使用tensorflow,完全可以pip install cleverhans == v3.1.0,下载之前的版本,其中包括很全面的对抗样本攻击。
- 相较而言,我更喜欢使用torch,这就需要下载cleverhans的最新版本,直接pip install cleverhans即可。这个版本兼容torch,tensorflow以及jax,但是这个版本的库仍然在github维护中,其中只包括部分对抗样本攻击实现。
- 因此本文会介绍在cleverhans最新版本下,如何使用torch来实现对抗样本的攻击。
2 cleverhans使用
实验步骤:
- 构建并训练网络模型
- 使用cleverhans实现PGD,DeepFool以及CW攻击
- 可视化
2.1 构建并训练模型
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
# 加载mnist数据集
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=10, shuffle=True)
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=10, shuffle=True)
# 超参数设置
batch_size = 10
epoch = 1
learning_rate = 0.001
# 生成对抗样本的个数
adver_nums = 1000
# LeNet Model definition
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
# 选择设备
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
# 初始化网络,并定义优化器
simple_model = Net().to(device)
optimizer1 = torch.optim.SGD(simple_model.parameters(),lr = learning_rate,momentum=0.9)
print (simple_model)
# 训练模型
def train(model,optimizer):
for i in range(epoch):
for j,(data,target) in tqdm(enumerate(train_loader)):
data = data.to(device)
target = target.to(device)
logit = model(data)
loss = F.nll_loss(logit,target)
model.zero_grad()
# 如下:因为其中的loss是单个tensor就不能用加上一个tensor的维度限制
loss.backward()
# 如下有两种你形式表达,一种是原生,一种是使用optim优化函数直接更新参数
# 为什么原生的训练方式没有效果???代表参数没有更新,就离谱。
# 下面的detach与requires_grad_有讲究哦,终于明白了;但是为什么下面代码不能work还是没搞懂
# for params in model.parameters():
# params = (params - learning_rate * params.grad).detach().requires_grad_()
optimizer.step()
if j % 1000 == 0:
print ('第{}个数据,loss值等于{}'.format(j,loss))
train(simple_model,optimizer1)
# eval eval ,老子被你害惨了
# 训练完模型后,要加上,固定DROPOUT层
simple_model.eval()
# 模型测试
def test(model,name):
correct_num = torch.tensor(0).to(device)
for j,(data,target) in tqdm(enumerate(test_loader)):
data = data.to(device)
target = target.to(device)
logit = model(data)
pred = logit.max(1)[1]
num = torch.sum(pred==target)
correct_num = correct_num + num
print (correct_num)
print ('\n{} correct rate is {}'.format(name,correct_num/10000))
test(simple_model,'simple model')
Output:
2.2 cleverhans攻击及可视化
- 以下代码完成CW,PGD以及DeepFool 攻击
from cleverhans.torch.attacks.fast_gradient_method import fast_gradient_method
from cleverhans.torch.attacks.carlini_wagner_l2 import carlini_wagner_l2
from cleverhans.torch.attacks.projected_gradient_descent import projected_gradient_descent
def PGD(model):
adver_example = None
adver_target = None
clean_example = None
clean_target = None
for i,(data,target) in enumerate(test_loader):
if i>=1:
break
# model_fn = lambda x:F.nll_loss(model(x),target.to(device))
adver_example = projected_gradient_descent(model, data.to(device),0.1,0.05,40,np.inf)
adver_target = torch.max(model(adver_example),1)[1]
clean_example = data
clean_target = target
return adver_example,adver_target,clean_example,clean_target,'PGD attack'
def FGSM(model):
adver_example = None
adver_target = None
clean_example = None
clean_target = None
for i,(data,target) in enumerate(test_loader):
if i>=1:
break
# model_fn = lambda x:F.nll_loss(model(x),target.to(device))
adver_example = fast_gradient_method(model, data.to(device), 0.1, np.inf)
adver_target = torch.max(model(adver_example),1)[1]
clean_example = data
clean_target = target
return adver_example,adver_target,clean_example,clean_target,'FGSM attack'
def CW(model):
adver_example = None
adver_target = None
clean_example = None
clean_target = None
for i,(data,target) in enumerate(test_loader):
if i>=1:
break
# model_fn = lambda x:F.nll_loss(model(x),target.to(device))
adver_example = carlini_wagner_l2(model, data.to(device), 10, y = torch.tensor([3]*batch_size,device = device) ,targeted = True)
adver_target = torch.max(model(adver_example),1)[1]
clean_example = data
clean_target = target
return adver_example,adver_target,clean_example,clean_target,'CW attack'
# print (adver_target.shape)
def plot_clean_and_adver(adver_example,adver_target,clean_example,clean_target,attack_name):
n_cols = 2
n_rows = 5
cnt = 1
cnt1 = 1
plt.figure(figsize=(4*n_rows,2*n_cols))
for i in range(n_cols):
for j in range(n_rows):
plt.subplot(n_cols,n_rows*2,cnt1)
plt.xticks([])
plt.yticks([])
if j == 0:
plt.ylabel(attack_name,size=15)
plt.title("{} -> {}".format(clean_target[cnt-1], adver_target[cnt-1]))
plt.imshow(clean_example[cnt-1].reshape(28,28).to('cpu').detach().numpy(),cmap='gray')
plt.subplot(n_cols,n_rows*2,cnt1+1)
plt.xticks([])
plt.yticks([])
# plt.title("{} -> {}".format(clean_target[cnt], adver_target[cnt]))
plt.imshow(adver_example[cnt-1].reshape(28,28).to('cpu').detach().numpy(),cmap='gray')
cnt = cnt + 1
cnt1 = cnt1 + 2
plt.show()
print ('\n')
adver_example,adver_target,clean_example,clean_target,attack_name= FGSM(simple_model)
plot_clean_and_adver(adver_example,adver_target,clean_example,clean_target,attack_name)
# CW能实现有目标以及无目标攻击
adver_example,adver_target,clean_example,clean_target,attack_name= CW(simple_model)
plot_clean_and_adver(adver_example,adver_target,clean_example,clean_target,attack_name)
adver_example,adver_target,clean_example,clean_target,attack_name= PGD(simple_model)
plot_clean_and_adver(adver_example,adver_target,clean_example,clean_target,attack_name)
- 如上代码,调用cleverhans的攻击函数很简单。如FGM攻击方式,只需调用如下代码即可 f a s t _ g r a d i e n t _ m e t h o d ( m o d e l , d a t a . t o ( d e v i c e ) , 0.1 , n p . i n f ) fast\_gradient\_method(model, data.to(device), 0.1, np.inf) fast_gradient_method(model,data.to(device),0.1,np.inf)。其中 m o d e l model model 就是自己训练的模型, d a t a data data 就是干净样本数据, n p . i n f np.inf np.inf 就是 L ∞ L_\infty L∞ 攻击,那个 0.1 0.1 0.1 就是epsilon ( ϵ \epsilon ϵ) 。
- 由于cleverhans的攻击源代码是函数(而非类)实现,使用起来就更加方便。可能你会有这样的疑问?那不同攻击方式的参数如何设置,如何进行有目标攻击以及无目标攻击?Simple,just go down
- 直接去cleverhans中的github页面,跳转。进入相应的攻击的文件,其函数输入变量的注释写的很清楚。如下图(只截图部分):
Output:
3 总结
- 我对torch的心是不会变的。但是cleverhans(v4.0.0)+torch 仅仅只能实现一点点对抗样本攻击,就这几个对抗样本攻击跳转。当然如果你的偏好是tensorflow,那就使用cleverhans v3.1.0版本的吧,里面的攻击方式很全面。
- 说到这里,可以看出cleverhans(v4.0.0)+torch已经不能满足我的欲望。因此 foolbox+torch的使用之旅即将开始!!!
附录
参考资料:
源代码: