大数据的技术
大数据技术包括:
1)数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
2)数据存取:关系数据库、NOSQL、SQL等。
3)基础架构:云存储、分布式文件存储等。
4)数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
5)统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6)数据挖掘:分类(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinitygroupingorassociationrules)、聚类(Clustering)、描述和可视化、DescriptionandVisualization)、复杂数据类型挖掘(Text,Web,图形图像,视频,音频等)模型预测:预测模型、机器学习、建模仿真。7)结果呈现:云计算、标签云、关系图等。
一、搭建大数据分析平台
面对海量的各种来源的数据,如何对这些零散的数据进行有效的分析,得到有价值的信息一直是大数据领域研究的热点问题。、、
在搭建大数据分析平台之前,要先明确业务需求场景以及用户的需求,通过大数据分析平台,想要得到哪些有价值的信息,需要接入的数据有哪些,明确基于场景业务需求的大数据平台要具备的基本的功能,来决定平台搭建过程中使用的大数据处理工具和框架。
操作系统一般使用开源版的RedHat、Centos或者Debian作为底层的构建平台,要根据大数据平台所要搭建的数据分析工具可以支持的系统,正确的选择操作系统的版本。
Hadoop作为一个开发和运行处理大规模数据的软件平台,实现了在大量的廉价计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心的设计是HDFS和MapReduce,HDFS是一个高度容错性的系统,适合部署在廉价的机器上,能够提供高吞吐量的数据访问,适用于那些有着超大数据集的应用程序;MapReduce是一套可以从海量的数据中提取数据最后返回结果集的编程模型。在生产实践应用中,Hadoop非常适合应用于大数据存储和大数据的分析应用,适合服务于几千台到几万台大的服务器的集群运行,支持PB级别的存储容量。
面对各种来源的数据,数据接入就是将这些零散的数据整合在一起,综合起来进行分析。数据接入主要包括文件日志的接入、数据库日志的接入、关系型数据库的接入和应用程序等的接入,数据接入常用的工具有Flume,Logstash,NDC(网易数据运河系统),sqoop等。对于实时性要求比较高的业务场景,比如对存在于社交网站、新闻等的数据信息流需要进行快速的处理反馈,那么数据的接入可以使用开源的Strom,Sparkstreaming等。
数据预处理是在海量的数据中提取出可用特征,建立宽表,创建数据仓库,会使用到HiveSQL,SparkSQL和Impala等工具。随着业务量的增多,需要进行训练和清洗的数据也会变得越来越复杂,可以使用azkaban或者oozie作为工作流调度引擎,用来解决有多个hadoop或者spark等计算任务之间的依赖关系问题。
除了Hadoop中已广泛应用于数据存储的HDFS,常用的还有分布式、面向列的开源数据库Hbase,HBase是一种key/value系统,部署在HDFS上,与Hadoop一样,HBase的目标主要是依赖横向扩展,通过不断的增加廉价的商用服务器,增加计算和存储能力。同时hadoop的资源管理器Yarn,可以为上层应用提供统一的资源管理和调度,为集群在利用率、资源统一等方面带来巨大的好处。
Hive可以将结构化的数据映射为一张数据库表,并提供HQL的查询功能,它是建立在Hadoop之上的数据仓库基础架构,是为了减少MapReduce编写工作的批处理系统,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce、编程能力较弱和不擅长Java的用户能够在HDFS大规模数据集上很好的利用SQL语言查询、汇总、分析数据。Impala是对Hive的一个补充,可以实现高效的SQL查询,但是Impala将整个查询过程分成了一个执行计划树,而不是一连串的MapReduce任务,相比Hive有更好的并发性和避免了不必要的中间sort和shuffle。
可以对数据进行建模分析,会用到机器学习相关的知识,常用的机器学习算法,比如贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。
对于处理得到的数据可以对接主流的BI系统,比如国外的Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数(可免费试用)等,将结果进行可视化,用于决策分析;或者回流到线上,支持线上业务的发展。
二、大数据分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
三、数据处理
采集大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
导入/预处理虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
统计/分析统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
挖掘与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。